GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The effects of climate change (CC) on contaminants and their potential consequences to marine ecosystem services and human wellbeing are of paramount importance, as they pose overlapping risks. Here, we discuss how the interaction between CC and contaminants leads to poorly constrained impacts that affects the sensitivity of organisms to contamination leading to impaired ecosystem function, services and risk assessment evaluations. Climate drivers, such as ocean warming, ocean deoxygenation, changes in circulation, ocean acidification, and extreme events interact with trace metals, organic pollutants, excess nutrients, and radionuclides in a complex manner. Overall, the holistic consideration of the pollutants-climate change nexus has significant knowledge gaps, but will be important in understanding the fate, transport, speciation, bioavailability, toxicity, and inventories of contaminants. Greater focus on these uncertainties would facilitate improved predictions of future changes in the global biogeochemical cycling of contaminants and both human health and marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Association for the Sciences of Limnology and Oceanography
    In:  EPIC32012 ASLO Aquatic Sciences Meeting, Japan, 2012-07-08-2012-07-13Shiga, Japan, Association for the Sciences of Limnology and Oceanography
    Publication Date: 2019-07-17
    Description: Diatoms play an essential role in marine biogeochemical cycles by their large contribution to primary production and particle export. Under nutrient limitation, diatom biomass often exhibits large deviations from the Redfield ratio. Here a biogeochemical ocean general circulation model is applied to investigate the influence of variations in diatom stoichiometry. The ecosystem model allows for variable Chl:C:N:Si stoichiometry in phytoplankton biomass regulated by light and availability of macronutrients (nitrate, silicic acid) and iron. Two size classes of phytoplankton are considered with the larger representing diatoms. After 5 years of simulation, the surface distributions of both phytoplankton groups are in a reasonable cyclostationary state. Compared to the ‘steady’ state, a sensitivity simulation with fixed diatom stoichiometry for Si:N of 1.2:1 showed a slight shift from small phytoplankton to diatoms leading to a shift in primary production between two groups. Total primary and export production were conservative, indicating a tendency for compensation. In the Southern Ocean, less opal production and decreased particle export ratio of Si:N resulted in raising silicic acid to the south of Subantarctic Front elucidating the importance of decoupling of different elemental cycles.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-03
    Description: The effects of climate change (CC) on contaminants and their potential consequences to marine ecosystem services and human wellbeing are of paramount importance, as they pose overlapping risks. Here, we discuss how the interaction between CC and contaminants leads to poorly constrained impacts that affects the sensitivity of organisms to contamination leading to impaired ecosystem function, services and risk assessment evaluations. Climate drivers, such as ocean warming, ocean deoxygenation, changes in circulation, ocean acidification, and extreme events interact with trace metals, organic pollutants, excess nutrients, and radionuclides in a complex manner. Overall, the holistic consideration of the pollutants-climate change nexus has significant knowledge gaps, but will be important in understanding the fate, transport, speciation, bioavailability, toxicity, and inventories of contaminants. Greater focus on these uncertainties would facilitate improved predictions of future changes in the global biogeochemical cycling of contaminants and both human health and marine ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...