GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Annual Reviews  (2)
Material
Publisher
  • Annual Reviews  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Annual Reviews ; 2001
    In:  Annual Review of Ecology and Systematics Vol. 32, No. 1 ( 2001-11), p. 51-93
    In: Annual Review of Ecology and Systematics, Annual Reviews, Vol. 32, No. 1 ( 2001-11), p. 51-93
    Abstract: ▪ Abstract  Most of our knowledge of biodiversity and its causes in the deep-sea benthos derives from regional-scale sampling studies of the macrofauna. Improved sampling methods and the expansion of investigations into a wide variety of habitats have revolutionized our understanding of the deep sea. Local species diversity shows clear geographic variation on spatial scales of 100–1000 km. Recent sampling programs have revealed unexpected complexity in community structure at the landscape level that is associated with large-scale oceanographic processes and their environmental consequences. We review the relationships between variation in local species diversity and the regional-scale phenomena of boundary constraints, gradients of productivity, sediment heterogeneity, oxygen availability, hydrodynamic regimes, and catastrophic physical disturbance. We present a conceptual model of how these interdependent environmental factors shape regional-scale variation in local diversity. Local communities in the deep sea may be composed of species that exist as metapopulations whose regional distribution depends on a balance among global-scale, landscape-scale, and small-scale dynamics. Environmental gradients may form geographic patterns of diversity by influencing local processes such as predation, resource partitioning, competitive exclusion, and facilitation that determine species coexistence. The measurement of deep-sea species diversity remains a vital issue in comparing geographic patterns and evaluating their potential causes. Recent assessments of diversity using species accumulation curves with randomly pooled samples confirm the often-disputed claim that the deep sea supports higher diversity than the continental shelf. However, more intensive quantitative sampling is required to fully characterize the diversity of deep-sea sediments, the most extensive habitat on Earth. Once considered to be constant, spatially uniform, and isolated, deep-sea sediments are now recognized as a dynamic, richly textured environment that is inextricably linked to the global biosphere. Regional studies of the last two decades provide the empirical background necessary to formulate and test specific hypotheses of causality by controlled sampling designs and experimental approaches.
    Type of Medium: Online Resource
    ISSN: 0066-4162
    URL: Issue
    RVK:
    Language: English
    Publisher: Annual Reviews
    Publication Date: 2001
    detail.hit.zdb_id: 1474454-5
    detail.hit.zdb_id: 2131893-1
    detail.hit.zdb_id: 2131661-2
    detail.hit.zdb_id: 280090-1
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Annual Reviews ; 2012
    In:  Annual Review of Marine Science Vol. 4, No. 1 ( 2012-01-15), p. 237-262
    In: Annual Review of Marine Science, Annual Reviews, Vol. 4, No. 1 ( 2012-01-15), p. 237-262
    Abstract: Benthic foraminifera, shell-bearing protists, are familiar from geological studies. Although many species are well known, undescribed single-chambered forms are common in the deep sea. Coastal and sublittoral species often have restricted distributions, but wide ranges are more frequent among deep-water species, particularly at abyssal depths. This probably reflects the transport of tiny propagules by currents across ocean basins that present few insurmountable barriers to dispersal, combined with slow rates of evolution. Undersampling of the vast deep-sea habitat, however, makes it very difficult to establish the ranges of less common foraminiferal species, and endemism may be more prevalent than currently realized. On continental slopes, some species have restricted distributions, but wide-ranging bathyal species that exhibit considerable morphological variation are more common. This may be linked to the greater heterogeneity of continental slopes compared with oceans basins. Improved knowledge of deep-sea foraminiferal biogeography requires sound morphology-based taxonomy combined with molecular genetic studies.
    Type of Medium: Online Resource
    ISSN: 1941-1405 , 1941-0611
    URL: Issue
    Language: English
    Publisher: Annual Reviews
    Publication Date: 2012
    detail.hit.zdb_id: 2458404-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...