GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • G13 - Contingent Pricing  (1)
  • Massively Parallel (Deep) Sequencing  (1)
  • Oxford University Press  (2)
  • Annual Reviews
  • 1
    Publication Date: 2016-04-24
    Description: Options on agricultural commodities with maturities exceeding one year seldom trade. One possible reason to explain this lack of trading is that we do not have an accurate option pricing model for products where mean reversion in spot-price levels can be expected. Standard option pricing models assume proportionality between price variance and time to maturity. This proportionality is not a valid assumption for commodities whose supply response brings prices back to production costs. The model proposed here incorporates mean reversion in spot-price levels and includes a correction for seasonality. Mean reversion and seasonality are both observed in the soybean market. The empirical analysis lends strong support to the model.
    Keywords: G13 - Contingent Pricing ; Futures Pricing, Q11 - Aggregate Supply and Demand Analysis ; Prices
    Print ISSN: 0002-9092
    Electronic ISSN: 1467-8276
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-20
    Description: The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice .
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...