GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • G13 - Contingent Pricing  (1)
  • Massively Parallel (Deep) Sequencing  (1)
  • Polymorphism/mutation detection  (1)
  • Oxford University Press  (3)
  • Annual Reviews
Publikationsart
Verlag/Herausgeber
  • Oxford University Press  (3)
  • Annual Reviews
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2014-08-01
    Beschreibung: Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR , that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts ( n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA , ERBB2 and FGFR2 ). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.
    Schlagwort(e): Polymorphism/mutation detection
    Print ISSN: 0305-1048
    Digitale ISSN: 1362-4962
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-04-24
    Beschreibung: Options on agricultural commodities with maturities exceeding one year seldom trade. One possible reason to explain this lack of trading is that we do not have an accurate option pricing model for products where mean reversion in spot-price levels can be expected. Standard option pricing models assume proportionality between price variance and time to maturity. This proportionality is not a valid assumption for commodities whose supply response brings prices back to production costs. The model proposed here incorporates mean reversion in spot-price levels and includes a correction for seasonality. Mean reversion and seasonality are both observed in the soybean market. The empirical analysis lends strong support to the model.
    Schlagwort(e): G13 - Contingent Pricing ; Futures Pricing, Q11 - Aggregate Supply and Demand Analysis ; Prices
    Print ISSN: 0002-9092
    Digitale ISSN: 1467-8276
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft , Wirtschaftswissenschaften
    Publiziert von Oxford University Press
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-01-20
    Beschreibung: The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice .
    Schlagwort(e): Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Digitale ISSN: 1362-4962
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...