GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (4)
  • Taylor & Francis  (3)
  • American Society of Limnology and Oceanography  (1)
  • 1
    Publication Date: 2019-09-23
    Description: Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. Recent investigations showed that another characteristic feature of cold seeps is the occurrence of methanotrophic archaea, which can be identified by specific biomarker lipids and 16S rDNA analysis. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH), bacterial production, enzyme activity, and sulfate reduction rates. Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6 2 10 10 cells cm m 3 ) and sulfate reduction rates (up to 8 w mol cm m 3 d m 1 ) in hydrate-bearing sediments, as well as a high bacterial diversity, especially in the group of i -proteobacteria including members of the branches Desulfosarcina/Desulfococcus , Desulforhopalus , Desulfobulbus , and Desulfocapsa . Most of the diversity of sulfate-reducing bacteria in hydrate-bearing sediments comprises seep-endemic clades, which share only low similarities with previously cultured bacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-15
    Description: Mass transfer rates of many gases, nutrients, and trace metals across the sediment water interface are dependent on environmental oxygen conditions. In this article, a novel gas exchange system for extended in situ flux and respiration measurements in benthic chambers under defined oxygen conditions is described. Integrated within a GEOMAR modular lander, the gas exchange system was used to perform in situ measurements of the total oxygen uptake and sea bed methane emission rates under constant oxygen conditions at Captain Arutyunov mud volcano (Gulf of Cadiz) in a water depth of 1320 m. During two separate lander deployments, the oxygen concentration within the benthic chambers was kept constant for 37 and 47 h, respectively. Under these conditions total oxygen uptake rate remained constant at 4.4 and 13.2 mmol m�2 d�1. Seabed methane emission was low, in the range 0 to 0.2 mmol m�2 d�1. The system is suited for prolonged (days) in situ flux determinations under natural background oxygen conditions and offers a wide range of experimental applications
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-25
    Description: The study presents results on the composition and vertical distribution of the near-bottom plankton community at an abyssal site in the NE Atlantic. Plankton samples were collected at 1, 15, 50 and 100 m above bottom (mab). Whereas the composition within the upper three layers was very similar, a major shift occurred in the immediate vicinity of the seafloor. Between 100 and 15 mab, the plankton was dominated by Copepoda, making up more than 75% of the total abundance and biomass (without gelatinous organisms). At 1 mab, Copepoda were still abundant, but their share decreased to ca. 50%, while Polychaeta, Malacostraca and Chaetognatha became important groups. Within the Copepoda, the predominance of the genus Metridia (Calanoida) in the upper layers was replaced by the genus Benthomisophria (Misophrioida) at 1 mab. Despite enrichment in organic particles towards the bottom, the total abundance and biomass of plankton did not show marked differences between the four layers investigated. Several hypotheses are discussed which may explain why the presumably higher food concentrations near the deep-sea floor do not lead to increased standing stocks of the plankton community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-17
    Description: In a midoceanic region of the northeast Atlantic, patches of freshly deposited phytodetritus were discovered on the sea floor at a 4500 m depth in July/August 1986. The color of phytodetritus was variable and was obviously related to the degree of degradation. Microscopic analyses showed the presence of planktonic organisms from the euphotic zone, e.g., cyanobacteria, small chlorophytes, diatoms, coccolithophorids, silicoflagellates, dinoflagellates, tintinnids, radiolarians, and foraminifers. Additionally, crustacean exuviae and a great number of small fecal pellets, “minipellets,” were found. Although bacteria were abundant in phytodetritus, their number was not as high as in the sediment. Phytodetrital aggregates also contained a considerable number of benthic organisms such as nematodes and special assemblages of benthic foraminifers. Pigment analyses and the high content of particulate organic carbon indicated that the phytodetritus was relatively undegraded. Concentrations of proteins, carbohydrates, chloroplastic pigments, total adenylates, and bacteria were found to be significantly higher in sediment surface samples when phytodetritus was present than in equivalent samples collected at the same stations in early spring prior to phytodetritus deposition. Only the electron transport system activity showed no significant difference between the two sets of samples, which may be caused by physiological stress during sampling (decompression, warming). The chemical data of phytodetritus samples displayed a great variability indicative of the heterogeneous nature of the detrital material. The gut contents of various megafauna (holothurians, asteroids, sipunculids, and actiniarians) included phytodetritus showing that the detrital material is utilized as a food source by a wide range of benthic organisms. Our data suggest that the detrital material is partly rapidly consumed and remineralized at the sediment surface and partly incorporated into the sediment. Incubations of phytodetritus under simulated in situ conditions and determination of the biological oxygen demand under surface water conditions showed that part of its organic matter can be biologically utilized. Based on the measured standing stock of phytodetritus, it is estimated that 0.3–3% of spring primary production sedimented to the deep-sea floor. Modes of aggregate formation in the surface waters, their sedimentation, and distribution on the seabed are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...