GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    BIT 30 (1990), S. 2-16 
    ISSN: 1572-9125
    Keywords: E.2 ; F.2.1 ; G.4 ; I.1.2 ; Matrix transposition ; mixed radix notation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An algorithm is developed and described for transposing a matrix larger than available working storage. If an (n×m)-matrix is stored in row-major order, and blocks ofn elements may be transferred to and from working storage at a time, the algorithm needsw=(5[m/n]+8)·n elements to be present in working storage at a time and requires [log2(2mn/w)] passages over the matrix. The algorithm is as efficient as earlier methods but needs no extra backing storage space. An algebra for mixed radix notation and a generalization of mixed radix notation is introduced for the description and verification of transposition algorithms, and earlier algorithms are briefly certified or disproved.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1871-2487
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The role of the global surface ocean as a source and sink for atmospheric carbon dioxide and the flux strengths between the ocean and the atmosphere can be quantified by measuring the fugacity of CO2 (ƒCO2) as well as the dissolved inorganic carbon (DIC) concentration and its isotopic composition in surface seawater. In this work, the potential of continuous wave cavity ringdown spectroscopy (cw-CRDS) for autonomous underway measurements of ƒCO2 and the stable carbon isotope ratio of DIC [δ13C(DIC)] is explored. For the first time, by using a conventional air-sea equilibrator setup, both quantities were continuously and simultaneously recorded during a field deployment on two research cruises following meridional transects across the Atlantic Ocean (Bremerhaven, Germany–Punta Arenas, Chile). Data are compared against reference measurements by an established underway CO2 monitoring system and isotope ratio mass spectrometric analysis of individual water samples. Agreement within ΔƒCO2 = 0.35 μatm for atmospheric and ΔƒCO2 = 2.5 μatm and Δδ13C(DIC) =0.33‰ for seawater measurements have been achieved. Whereas “calibration-free” ƒCO2 monitoring is feasible, the measurement of accurate isotope ratios relies on running reference standards on a daily basis. Overall, the installed CRDS/equilibrator system was shown to be capable of reliable online monitoring of ƒCO2, equilibrium δ13C(CO2), δ13C(DIC), and pO2 aboard moving research vessels, thus making possible corresponding measurements with high spatial and temporal resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...