GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology (ASH)  (2)
  • 1
    Publication Date: 2012-12-07
    Description: Plasmacytoid dendritic cells (pDCs), originating from hematopoietic progenitor cells in the BM, are a unique dendritic cell subset that can produce large amounts of type I IFNs by signaling through the nucleic acid–sensing TLR7 and TLR9 (TLR7/9). The molecular mechanisms for pDC function and development remain largely unknown. In the present study, we focused on an Ets family transcription factor, Spi-B, that is highly expressed in pDCs. Spi-B could transactivate the type I IFN promoters in synergy with IFN regulatory factor 7 (IRF-7), which is an essential transcription factor for TLR7/9-induced type I IFN production in pDCs. Spi-B–deficient pDCs and mice showed defects in TLR7/9-induced type I IFN production. Furthermore, in Spi-B–deficient mice, BM pDCs were decreased and showed attenuated expression of a set of pDC-specific genes whereas peripheral pDCs were increased; this uneven distribution was likely because of defective retainment of mature nondividing pDCs in the BM. The expression pattern of cell-surface molecules in Spi-B–deficient mice indicated the involvement of Spi-B in pDC development. The developmental defects of pDCs in Spi-B–deficient mice were more prominent in the BM than in the peripheral lymphoid organs and were intrinsic to pDCs. We conclude that Spi-B plays critical roles in pDC function and development.
    Keywords: Hematopoiesis and Stem Cells, Immunobiology
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-09
    Description: Basophils and mast cells play critical roles in host defense against pathogens and allergic disorders. However, the molecular mechanism by which these cells are generated is not completely understood. Here we demonstrate that interferon regulatory factor-8 (IRF8), a transcription factor essential for the development of several myeloid lineages, also regulates basophil and mast cell development. Irf8 –/– mice displayed a severe reduction in basophil counts, which was accounted for by the absence of pre-basophil and mast cell progenitors (pre-BMPs). Although Irf8 –/– mice retained peripheral tissue mast cells, remaining progenitors from Irf8 –/– mice including granulocyte progenitors (GPs) were unable to efficiently generate either basophils or mast cells, indicating that IRF8 also contributes to the development of mast cells. IRF8 appeared to function at the GP stage, because IRF8 was expressed in GPs, but not in basophils, mast cells, and basophil/mast cell-restricted progenitor cells. Furthermore, we demonstrate that GATA2, a transcription factor known to promote basophil and mast cell differentiation, acts downstream of IRF8. These results shed light on the pathways and mechanism underlying the development of basophils and mast cells.
    Keywords: Phagocytes, Granulocytes, and Myelopoiesis
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...