GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (271)
  • 1
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 8556-8557
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood Advances, American Society of Hematology, Vol. 4, No. 8 ( 2020-04-28), p. 1700-1710
    Abstract: There is no standard or widely effective treatment of patients with moderate aplastic anemia (MAA) or hypo-productive uni-lineage cytopenias (UC). Eltrombopag (EPAG), a small molecule thrombopoietin mimetic, has previously been shown to result in durable multi-lineage hematologic responses with low toxicity in patients with refractory severe aplastic anemia (SAA). Its safety and efficacy in MAA are unknown. This prospective phase 2 study enrolled previously untreated and treated MAA and UC patients with clinically relevant cytopenias. EPAG was administered at doses escalating from 50 to 300 mg/d. Hematologic responses were assessed at 16 to 20 weeks. Responding patients were continued on EPAG until reaching defined robust or stable blood counts. EPAG was reinstituted for relapse. Thirty-four patients were enrolled between 2012 and 2017, including 31 with MAA and 3 with UC. Seventeen patients responded in at least 1 eligible lineage by the primary end point. A striking improvement in anemia was observed in a patient with Diamond-Blackfan anemia. EPAG was well tolerated, and it was discontinued for robust or stable blood counts in 12 of 17 patients after a median of 8 months. A majority required re-initiation of EPAG for declining counts, and all regained response. Two of 34 patients developed non–chromosome 7 bone marrow cytogenetic abnormalities while taking EPAG, without dysplasia or increased blasts. Somatic mutation allele frequencies in cancer genes did not increase overall on EPAG. EPAG is a well-tolerated oral treatment of cytopenias in patients with MAA/UC. This trial was registered at www.clinicaltrials.gov as #NCT01328587.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 601-601
    Abstract: Introduction: Immune aplastic anemia (AA) is effectively treated with either immunosuppressive treatment (IST) or allogeneic hematopoietic stem cell transplant (HSCT). Clonal evolution remains the most feared long-term complication after IST. We investigated predictor factors, genetic characteristics, and long-term outcomes of patients who developed either secondary myeloid neoplasia or isolated chromosomal abnormalities without morphologic dysplasia after immunosuppression. Methods: All patients with severe AA treated at the NIH Clinical Center with IST from 1989-2020 who underwent clonal evolution were categorized as "high-risk" (overt myeloid neoplasia, or isolated chromosome 7 abnormality / complex cytogenetics) or "low-risk" (isolated chromosome abnormalities without overt myeloid neoplasia or dysplasia; isolated chromosome 7 abnormality or complex cytogenetics were characterized as high-risk). Univariable analysis was performed using the Fine-Gray competing risk regression model using death as a competing risk to determine predictors of clonal evolution. Classification and regression tree analysis of time to clonal evolution was performed on continuous baseline variables to partition the data based on the best categorical cutoff. Long term outcomes assessed included overall survival (OS) and HSCT. Error corrected next-generation sequencing (ECS) was used to assess for pathogenic somatic variants in known myeloid cancer genes in clonal evolvers both at time of evolution and in serial samples prior when available. Results: Of 659 patients with severe AA included in this study, 95 developed clonal evolution: 59 high-risk and 36 low-risk. Age & gt;48 years at diagnosis and pre-treatment ANC & gt;0.87x10 9/L were strong predictors of high-risk clonal evolution. High-risk clonal evolution was increased in patients aged & gt;48 years, with cumulative incidence (CI) of 13.9% by 5 years compared to patients aged & lt;48 years of 3.8% by 5 years (p & lt;0.001). Baseline ANC & gt;0.87 x10 9/L (independent of age) predicted an even higher risk of evolution; CI for high-risk evolution was 17% by 5 years (p & lt;0.001). Combined high ANC and older age ( & gt;48 years) were prognostic of the greatest risk of high-risk evolution, with a hazard ratio (HR) of 5.51; conversely, ANC & lt;0.87 x10 9/L and age & lt;48 years was protective, with HR 0.32. High-risk clonal evolution was not significantly increased by use of eltrombopag with IST versus IST only (p=0.3), but there was an increase when all clonal evolution was considered (p=0.02). Overall survival in high-risk evolution was 35% at 5 years and in low-risk evolution was 84% (p & lt;0.001). Patients with high-risk evolution who underwent HSCT (n=26) had better OS compared to those treated with chemotherapy or supportive care (p=0.005). RUNX1 (13 variants in 8 [35%] patients) and ASXL1 (13 variants in 10 [43%] patients) were the most frequent mutated genes at time of clonal evolution in high-risk patients, and BCOR/L1 (14 variants in 8 [32%] patients) was the most frequently mutated in the low-risk group. Longitudinal data were available in five high-risk and eight low-risk patients. Three of five high-risk patients had acquisition or expansion of RUNX1 clones at evolution. Small RUNX1 variants were present in two patients as early as three years prior to high-risk evolution. Splicing factor genes and RUNX1 somatic variants were detected exclusively in the high-risk group; DNMT3A, BCOR/L1 and ASXL1 gene mutations were present in both groups. Conclusion: Age and pre-treatment ANC strongly predict high-risk clonal evolution in AA patients after IST and may be used determine at-risk patients for long term follow-up. Outcomes in patients with low-risk evolution are favorable but poor in high-risk evolution without HSCT. The clonal landscape differs between high-risk and low-risk evolution; MDS-associated genetic mutations are enriched in high-risk evolution, in particular RUNX1. Further study of the role of RUNX1 in high-risk clonal evolvers may give insight into leukemogenesis in AA. Figure 1: Cumulative incidence (CI) of clonal evolution since immunosuppression with death treated as competing risk. (A) CI for development of all clonal evolution in patients & gt;37 years (B) and high-risk clonal evolution in patients & gt;48 years (C) CI for development of all clonal evolution when baseline ANC & gt;0.87x10 9/L and (D) high-risk clonal evolution when baseline ANC & gt;0.87x10 9/L. Figure 1 Figure 1. Disclosures Young: Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 39-40
    Abstract: Eltrombopag (EPAG) is a non-peptide, thrombopoietin receptor agonist approved for several forms of thrombocytopenia, as well as severe aplastic anemia in first line (combined with immunosuppressive therapy) and refractory (single agent) settings. It is effective in moderate aplastic anemia and under investigation for myelodysplastic syndrome (MDS) and other marrow failure conditions. Although aplastic anemia (AA) patients often respond to EPAG and become drug-independent, this may take months to years, and some patients remain either continuously or intermittently EPAG-dependent. Previously, we and others have reported that EPAG chelates and mobilizes iron in a cohort of AA patients. We present a larger cohort of AA/MDS patients from 4 prospective clinical trials of EPAG, and report declining iron stores on extended EPAG therapy, including some patients developing frank iron deficiency anemia (IDA) responsive to oral or parenteral supplementation, and others normalizing prior severe iron overload during extended EPAG therapy. We report the kinetics of this effect and analyze its impact, if any, upon response and relapse. 317 patients were treated with EPAG for unilineage cytopenia, AA or MDS. 206 AA patients treated on non-EPAG protocols served as historical controls. Average follow-up was 42.9 months (2.2-206.7) for EPAG and 69.6 months (6.1-196) for controls. Average time on EPAG was 9.0 months (0.4-81.1); 73 patients (23.0%) were treated for ≥ 7 months. Average baseline serum ferritin (SF) was 1757 ng/mL (29-18977) for EPAG; 1628 ng/mL (14-8438) for controls (N.S.), with iron overload (SF ≥ 1000 ng/mL) in 56.5% of EPAG patients; 53.9% of controls (N.S.). On EPAG, serum iron (2x over baseline, P & lt; 1.3 x 10-39) and transferrin saturation (85.1% of patients have 100% saturation) are elevated due to binding by EPAG, while serum ferritin (SF) does not correlate with iron or transferrin saturation. These effects resolve following EPAG therapy: iron is 15% lower than baseline (P = 5.1 x 10-5), median saturation is 40%, and SF and iron correlate. No such dissociation is noted for historical controls. This implies that SF is the most reliable measure of iron status while on EPAG due to its chelating properties. EPAG duration correlates with SF fold-reduction (R2 = 0.19, P & lt; 4 x 10-14). SF levels during EPAG treatment follow first order (exponential) kinetics (R2 = 0.35, P & lt; 2 x 10-20), with a clearance half-life of 15.3 months, independent of baseline SF. There is minimal correlation of treatment response with SF kinetics (P = 0.04). In comparison, historical responders demonstrate a significantly slower SF clearance (P & lt; 8 x 10-10) with a half-life of 47.5 months. SF half-life on EPAG is comparable to that of chelators such as deferoxamine or deferasirox used for transfusion-related iron overload in AA/MDS. This similarity in kinetics and the fact that this effect is independent of treatment response (and thus transfusion burden) support a role for EPAG in actively depleting total body iron. Of 305 evaluable patients, 62 (9.8%) had iron-depletion as measured by ferritin. 30 (7.5%) were during EPAG treatment with a median time of 55.0 months. 11 (3.6%) of patients experienced falling hemoglobin or other signs of anemia. 9 started iron supplementation or discontinued EPAG, with improvement in the 5 patients who have had follow-up. Patients with EPAG-induced IDA follow the same kinetics (15.5-month half-life) as the general cohort. Logistic models do not predict response based upon either baseline ferritin or kinetics. Furthermore, neither logistic nor Kaplan-Meier models identify any timepoint ferritin, baseline iron overload, or kinetics as predictors of relapse risk. While iron and ferritin may be biomarkers of disease and transfusion burden, they do not appear to drive outcomes, and do not support the recent hypothesis that response of marrow failure to EPAG is based on iron chelation and reversal the toxic impact of intracellular iron on hematopoietic stem cells. Our data suggest a potential role for EPAG or its derivatives as iron chelators. More importantly, they demonstrate that EPAG can deplete iron stores, paradoxically requiring supplementation in previously overloaded patients. In addition to relapse, IDA should also be considered in responders on long term EPAG with declining hemoglobin. We recommend maintaining SF greater than 100 ng/mL so that these patients may continue this life-saving therapy. Figure 1 Disclosures Young: Novartis: Research Funding. Dunbar:Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 133, No. 24 ( 2019-06-13), p. 2575-2585
    Abstract: Eltrombopag (EPAG) received approval from the US Food and Drug Administration for the treatment of refractory severe aplastic anemia (rSAA) based on treatment of 43 patients with doses escalating from 50 to 150 mg daily for 12 weeks. Response kinetics suggested that more prolonged administration of EPAG at a dose of 150 mg could speed and improve response rates. We enrolled 40 patients with rSAA in a study of EPAG 150 mg daily, with a primary end point of response at 24 weeks. Twenty (50%) of 40 patients responded at 24 weeks; 5 (25%) of 20 would have been deemed nonresponders at 12 weeks, the end point of the previous study. Fifteen of the 19 responding patients continuing on EPAG had drug discontinued for robust response; 5 of the 15 required EPAG re-initiation for relapse, with all recovering response. To analyze risk of clonal progression, we combined long-term data from the 83 patients with rSAA enrolled in both studies. Evolution to an abnormal karyotype occurred in 16 (19%), most within 6 months of EPAG initiation. Targeted deep sequencing/whole-exome sequencing was performed pre-EPAG and at primary response end point and/or time of clonal evolution or longest follow-up. Cytogenetic evolution did not correlate with mutational status, and overall mutated allele fractions of myeloid cancer genes did not increase on EPAG. In summary, extended administration of EPAG at a dose of 150 mg for 24 weeks rescued responses in some patients with rSAA not responding at 12 weeks. The temporal relationship between clonal evolution and drug exposure suggests that EPAG may promote expansion of dormant preexisting clones with an aberrant karyotype. The studies were registered at www.clinicaltrials.gov as #NCT00922883 and #NCT01891994.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1111-1111
    Abstract: Introduction: Telomere biology (TBD) disorders are caused by pathogenic germline variants in genes related to telomere maintenance. In TBD, clonal hematopoiesis (CH) has been hypothesized to compensate for restricted cell fitness and to lead to development of myelodysplastic syndromes and acute myeloid leukemia (MDS/AML). We sought to characterize the clonal landscape and dynamics by deep sequencing of a large cohort of TBD patients with a broad spectrum of phenotypes and ages. Methods: We screened 120 TBD patients (median age=29) from the National Institutes of Health and the University of Sao Paulo for somatic mutations in genes related to myeloid malignancies and telomere diseases using an error-correcting DNA sequencing panel (minimum allele frequency [VAF] of 0.5%). Patients had either a pathogenic germline variant in telomere-related genes or short telomeres in blood and a strong clinical suspicion for TBD. Relatives were included if they harbored the proband's germline mutation. Single-cell DNA sequencing was performed in marrow samples from two TBD patients with MDS (TBD-MDS) to elucidate clonal trajectories Results: Fifty-eight TBD patients (48%) had somatic mutations in peripheral blood (median age and range, 42 years; 9-57), most frequently in PPM1D (all exon 6 truncated; n=18) , TERTp (-57, -124, and -146; n=14), POT1 (n=12), U2AF1 (n=12), and other MDS-associated genes. Clinically, these patients had dyskeratosis congenita (DC; n=12/27), aplastic anemia (AA; n=11/27), isolated cytopenias (n=7/10), MDS/AML (n=7/8), pulmonary or liver fibrosis (n=4/8), and multi-organ disease (n=19/26). In this series, no relatives had somatic mutations (n=14). CH frequency increased with age and was significantly more frequently observed than in healthy controls, regardless of age (p & lt;0.001). POT1, PPM1D, and TERTp clones size was lower than the size of MDS-associated clones (VAF of 1% vs 8%). These mutations often co-occurred, except for POT1 and TERTp mutation. Patients' clonal profiles correlated with the underlying germline defect. Somatic P OT1 mutations strongly associated with TINF2 germline variants, and consequently DC: 5/9 TINF2 patients had one (n=2) or & gt;2 POT1 clones (n=3). In contrast, both TERTp and PPM1D clones were mostly detected in TERT/TERC patients with multi-organ disease, especially pulmonary fibrosis and marrow failure. No telomere elongation or improved blood counts were seen in serial samples. TINF2 patients with somatically mutated POT1 clones were older despite their DC diagnosis (median age=19 vs 5 years in POT1 mutated and wild type, respectively). A single patient with a germline TINF2 R282C and somatically mutated POT1 clone at VAF=29%, which was stable for 5 years, had MAA. The median ages (range) of TERT/TERC patients with TERTp and PPM1D mutations were 41 (25-64) and 43 (12-72), respectively, whereas TERT/TERC patients without TERTp and PPM1D mutations were at a median age of 27 (8-58). Most clones were stable regardless of clinical phenotype, even after danazol treatment. PPM1D clones were stable for 2-9 years of follow-up. TERTp and POT1 clones' size decreased while on androgens but consistently increased after the drug was discontinued. In single-cell DNA analysis of two TBD-MDS patients, the U2AF1 S34F and Q157R were driver mutations and occurred with mutations in RUNX1, ETV6, ASXL1; these clones were stable for 3-6 years. In the first case, the U2AF1 clone subsequently acquired a RUNX1 mutation; this clone was coincident with an independent clone containing PPM1D and POT1 mutations. In the second patient, a U2AF1 clone acquired successive mutations in SETBP1 and AXSL1; a second clone with U2AF1 and additional mutations in GATA2 and KRAS arose at evolution to AML. Conclusion: In TBD, the somatic landscape differed from age-related CH, with recurrent TERTp, POT1, and truncated PPM1D mutations. Mutations' frequency increased with age but was related to the underlying germline mutation. It is uncertain whether clonal selection is a probabilistic consequence of older age or the cause of mild phenotypes and prolonged lifespan. Despite the association of POT1 and PPM1D with malignancies, no patients in our cohort had POT1-related cancers or had received chemotherapy. POT1 and PPM1D like TERTp mutations may arise to compensate for cell fitness. Clinically, this distinct clonal landscape, not found in immune BMF, could serve as a molecular marker of underlying TBD. Disclosures Calado: Instituto Butantan: Consultancy; AA & MDS International Foundation: Research Funding; Agios: Membership on an entity's Board of Directors or advisory committees; Novartis Brasil: Honoraria; Alexion Brasil: Consultancy; Team Telomere, Inc.: Membership on an entity's Board of Directors or advisory committees. Young: Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 140, No. 13 ( 2022-09-29), p. 1496-1506
    Abstract: Somatic mutations in UBA1 cause vacuoles, E1 ubiquitin-activating enzyme, X-linked, autoinflammatory somatic (VEXAS) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, whereas transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these 3 canonical VEXAS variants produce more UBA1b than any of the 6 other possible single-nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with 2 novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A & gt;T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but coexpression with the second mutation (c.119 G & gt;C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 539-539
    Abstract: Telomerase reactivation by acquisition of mutations in the TERT promoter (TERTp) region is a mechanism of tumorigenesis. The most common TERTp mutations are located in positions -146, -124, and -57 upstream the initiation codon. In non-malignant diseases, TERTp mutations only have been reported in patients with idiopathic pulmonary fibrosis (IPF) caused by germline mutations in telomere biology genes, that are also etiologic in a broader spectrum of diseases collectively named telomeropathies (such as IPF, aplastic anemia [AA], dyskeratosis congenita [DC] , and cirrhosis). We screened blood from 136 patients with telomeropathies (median age=29 years; range, 1-76), 52 relatives (median age=40 years; range, 8-72), and 195 controls using a customized low-cost amplicon-based next-generation sequencing (NGS) assay for identification and quantification TERTp mutations. Patients had DC (n=21), AA (n=86), IPF with or without another telomeropathy-related phenotype (n=18), or other phenotypes (n=11). Inclusion criteria were telomere length (TL) below the 10th percentile of age-matched controls or a germline mutation in a telomere-related gene classified as pathogenic/likely pathogenic or of uncertain significance by the ACMG criteria. Patients' relatives were only studied if they carried the same germline mutation as the proband or had short telomeres, regardless of symptoms or evidence of disease. Patients with acquired AA (n=70), IPF (n=12), other inherited bone marrow failure (n=7), and acute myeloid leukemia (AML; n=106) were controls. All TERTp mutations identified by NGS were confirmed and tracked over time by droplet digital PCR. We identified the -124 or -146 mutations in leukocytes from 12 unrelated patients diagnosed with IPF (n=6), DC (n=2), or moderate AA (n=4). Five relatives also had the -146 (n=1), and -124 (n=4) mutations, all carriers of a germline mutation in telomere biology gene. The frequency of TERTp mutations was much higher in IPF patients compared to AA cases (33% vs. 4.6%; Fisher's exact test, P=0.0016). However, no difference in frequency of TERTp mutations among patients with IPF vs. marrow failure was observed (41% vs. 58%; Fisher's exact test, P 〉 0.05), suggesting TERTp mutations occurred in both clinical presentations. MutTERTp clones positively correlated with age, as they were only present in individuals older than 18 years old and more frequent in those 60 to 80 years old. Also, TERTp mutations more frequently co-ocurred with germline TERT mutations (n=13) compared to mutations in TERC (n=2), RTEL1 (n=1), or DKC1 (n=2) (76% vs. 23%; Fisher's exact test, P=0.002). All germline variants were pathogenic or had some evidence of pathogenicity. MutTERTp clones size varied from 1.2% to 50% in total leukocytes and was at higher allele frequencies (VAF) in the granulocytic fraction from four patients. In serial samples (available for five patients), the mutTERTp clone size expanded over time, suggesting a selective growth advantage in comparison to unmutated hematopoietic cells. Despite that, mutTERTp clones did not associate with blood counts or telomere elongation; most subjects carrying a TERTp mutation, which is known to upregulate TERT expression, nevertheless had short or very short telomeres (15 out of 17 individuals). Six patients with mutTERTp clones (VAF ranging from 3-33% in myeloid cells) were treated with danazol for two years; four were responders and two were off-study after 3-6 months. In serial samples (available for two patients), the mutTERTp clone sizes decreased during danazol treatment while blood counts improved. After treatment, mutTERTp clones VAF increased. TERTp mutations were found in telomeropathy patients who had a germline variant in telomere biology genes but not in controls or patients with very short telomeres without germline variant in telomere biology genes. We have expanded the spectrum of non-malignant diseases associated with somatic TERTp mutations to DC, AA, and cirrhosis. Our data indicate that mutTERTp clones are specifically and randomly selected with aging in a marrow environment deficient in telomerase function, and mutTERTp selection did not associate with patients' peripheral blood counts, TL, and response to danazol treatment. TERTp emergence may be a useful clonal indicator for telomere dysfunction and may help to assess the pathogenicity of unclear constitutional variants in telomeropathies. Disclosures Young: CRADA with Novartis: Research Funding; National Institute of Health: Research Funding; GlaxoSmithKline: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2587-2587
    Abstract: Inherited and acquired bone marrow failure syndromes (BMF) may be difficult to distinguish due to heterogeneity and overlap of clinical phenotypes. Genomic screening has been increasingly used to identify mutations in BMF-related genes that are known to be etiologic in inherited BMF. However, genomic testing is expensive, results may not return for several seeks, and findings can be difficult to interpret as some reported variants are of unclear clinical significance. To guide the decision-making for genetic testing and results interpretation, we aimed to identify clinical and molecular parameters associated with a higher probability of patients having an inherited disease. We screened 323 BMF patients from two independent cohorts for germline mutations in BMF-related genes using a targeted next-generation sequencing (NGS) assay, and correlated the results with patients' prior diagnosis, family history, telomere length (TL), karyotype, and the presence of a paroxysmal nocturnal hemoglobinuria (PNH) clones. Patients were followed at the Hematology Branch of NHLBI (NHLBI, n=179) and the Ribeirão Preto Medical School, University of São Paulo (USP, n=144). Diagnoses included were severe (SAA) and moderate aplastic anemia (MAA), isolated cytopenias, myelodysplastic syndrome (MDS), hypocellular MDS (HypoMDS), dyskeratosis congenita (DC), and Diamond-Blackfan anemia (DBA). Patients were classified as suspected to have inherited BMF (phenotype suggestive for constitutional disease, short or very short telomeres, family history of hematologic, pulmonary, or liver disease, and idiopathic cytopenias), or acquired BMF (normal TL and no signs of constitutional disease) (Figure 1A). Pathogenicity of novel and rare variants was assessed using the ACMG criteria. We identified a pathogenic (or likely pathogenic) germline variant in 21 (18%) and 44 (47%) inherited BMF patients from NHLBI and USP cohorts, respectively (Figure 1B). Altogether, mutated genes were associated with telomeropathies (mostly DC and MAA), congenital cytopenias, DBA, cryptic Fanconi anemia, and myeloid malignancies (Figure 1C). In both cohorts, inherited BMF patients with DC, DBA, MAA, and isolated cytopenias were more likely to have a pathogenic variant. BMF patients suspected to have an acquired disease were rarely found with a pathogenic variant; one patient from each cohort (NHLBI, 1.5% and USP, 2%), carried the R166A RUNX1 and A202T TERT variants, respectively. Overall, patients with SAA were highly unlikely to have a pathogenic variant, regardless of the clinical suspicion for constitutional disease (Figure 1B). The presence of PNH clone and chromosomal abnormalities were poorly associated with variants' pathogenicity; only one patient from the USP cohort had a PNH clone of 6% and the pathogenic TERT D718E variant, and three patients had an abnormal karyotype (indicated by asterisks in Figure 3C). In both cohorts, we additionally screened 101 acquired BMF and 140 inherited BMF patients for somatic clones in myeloid-driver genes. These results recapitulated the clonal landscape previously observed in AA by our group; the frequency of variants in ASXL1, DNMT3A, TET2, and JAK2, but not in BCOR and BCORL1, increased with aging. In the current study, TP53, RUNX1, and Ras genes were more frequently mutated in the patients suspected to have inherited BMF (Fisher's exact test, 14% vs. 4.4%; p 〈 0.005) whereas BCOR and BCORL1 were more commonly abnormal in patients suspected to have acquired BMF (18% vs. 3.1%; p 〈 0.005). Somatic mutations were particularly present in 5/21 DC patients (23%, median age, 11 years) but not in DBA (1 out of 11; median age, 3) and isolated cytopenias (median age, 6). In summary, inherited BMF patients were more likely to have a pathogenic variant compared to acquired BMF (18% vs. 1.5%, p 〈 0.001). Inherited BMF patients with MAA and isolated cytopenias without PNH clones and a normal karyotype had increased risk of having constitutional disease. Systematic analysis of clinical and genomic data may be helpful to assist physicians in identifying patients who should be first screened for inherited BMF based on the probability of finding a pathogenic germline variant. Figure. Figure. Disclosures Dunbar: National Institute of Health: Research Funding. Young:CRADA with Novartis: Research Funding; GlaxoSmithKline: Research Funding; National Institute of Health: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 2182-2182
    Abstract: Genetic testing has been increasingly used to assist with differential diagnosis of acquired vs inherited bone marrow failure syndromes (IBMFS), a group of rare and heterogeneous diseases. However, the assay is still costly and not routinely available for many hematologists. To improve decision-making for genetic testing, we developed a genomic-based machine-learning model based on a two-step data-driven clustering and classification process to predict the likelihood of BMF patients having either an acquired or inherited disease based on 27 clinical and laboratory variables recorded at initial clinical encounter. Clinical records from two independent cohorts of patients screened for pathogenic variants in genes associated with IBMFS were included in this study: the NIH cohort with 441 consecutive patients followed at the NHLBI and NCI, and the USP cohort with 172 consecutive patients from the Medical School of Ribeirão Preto/USP. In a binary target classification, cases were labeled as inherited if they had a pathogenic/likely pathogenic disease-causing variant and as acquired when they had benign or likely benign variants or negative genetic test, regardless of patients' clinical diagnoses. K-means clustering was first applied to resolve our highly dimensional data into two main clusters (Clusters A and B). An optimized bootstrap aggregation ensemble Cluster A specific was trained with cases from the NIH cohort (n=359). The model was then validated with Cluster A cases from the external USP cohort (n=127). The binary classification task was utilized to predict the etiology of BMF cases, labeled as acquired or inherited depending on patients' genomic data. At first, unsupervised clustering separately grouped datasets into Cluster A, the largest group mostly represented by aplastic anemia (AA), and Cluster B, those underrepresented in our cohort including some classical IBMFS at early disease onset. The ensemble model Cluster A-specific was accurate to predict the BMF etiology in 88% of cases, correctly predicting inherited and likely immune BMF in 72% and 92% of cases, respectively. Out of the 27 initial clinical variables included in the model, 25 were found to be important for prediction. Telomere length (TL), age, and clinical variables were most important for the model's predictive accuracy, highlighting that a comprehensive history and physical examination encompassing all organ systems is imperative. Based on our model, genetic testing must be considered for patients in Cluster A predicted to have inherited disease and also for patients in Cluster B as no specific model was available but they were more likely to have IBMFS in comparison to Cluster A (50% vs 30%). We also recommend genetic screening in patients from Cluster A predicted to have acquired disease who are children (age & lt;18 years who may not have clinical signs of IBMFS), have consanguinity in the family, have a diagnosis of myelodysplastic syndromes with or without suspicion for familial predisposition to myeloid malignancies (all cases where the model had limited prediction). A model without TL, an assay that can also be limited in low-resource centers, underperformed for prediction of inherited cases with sensitivity of 55%, highlighting the importance of TL measurement for the model's performance. Our machine-learning model reproduced the clinical knowledge used by clinicians specialized in BMF and accurately predicted BMF etiology in 88% of cases. The model was particularly accurate for differential diagnosis of immune AA in adults, which may allow for selections of patients in whom rapidly starting immunosuppression rather than waiting weeks for genetic results is preferable. Clinical variables were strong predictors and adult patients with severe AA rarely had an inherited disease without a positive family history, a suggestive phenotype of IBMFS, or consanguinity being present. The generalizability of our model indicates that this tool can be used by hematologists not specialized in BMF to prioritize patients that would benefit from genetic testing. TL was a top predictor and a key variable for this model's accuracy. Implementation of TL measurement may be critical for differential diagnosis of BMF, especially in low-resource centers where genetic testing is not feasible or readily available. We plan to continue adding to the model to better predict IBMFS cases that were underrepresented in the current cohort. Disclosures Calado: Instituto Butantan: Consultancy; Agios: Membership on an entity's Board of Directors or advisory committees; Alexion Brasil: Consultancy; Novartis Brasil: Honoraria; Team Telomere, Inc.: Membership on an entity's Board of Directors or advisory committees; AA & MDS International Foundation: Research Funding. Young: Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...