GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (12)
  • 1
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3908-3908
    Abstract: Diffuse large B-cell lymphomas (DLBCL) are heterogeneous diseases caused by several genetic aberrations. The novel post-transcriptional regulator gene called transformed follicular lymphoma (TFL) was first identified from t(2;6)(p12;q23), which appeared during the transformation of FL to DLBCL (Minagawa et al. Br J Haematol 2007). Normal human lymphocytes generally express TFL, but it is defective in some leukemia/lymphoma cell lines. TFL overexpression in such cell lines inhibited cell growth, suggesting that TFL functions as a tumor suppressor (Minagawa et al. Mol Cancer Res 2009). TFL locates in mRNA processing body in the cytoplasm and has the unique CCCH-type zinc finger motif functioning as RNase. TFL regulates several cytokines, including IL-2, IL-6, IL-10, TNF-α, and IL-17a, via mRNA degradation. In an experimental autoimmune encephalitis model, TFL null mice (TFL-/-) demonstrated persistent paralysis, resulting from more infiltration of Th17 cells into CNS with markedly increased IL-17a mRNA levels. Therefore, a TFL-driven feedback mechanism for excessive inflammation is indispensable to suppress T-cell-mediated autoimmune diseases (Minagawa et al. J Immunol 2014). TFL deletion examined by FISH using a 110kbp DNA probe containing an entireTFL locus was found in 12.8% of mature B-cell lymphomas (n=86, FL=30, DLBCL=40). However, the pathological significance of TFL deletion has not yet been clarified. To investigate how TFL loss affects lymphoma biology, we developed VavP-bcl2 transgenic (Bcl2-Tg)/TFL-/-mice. Although the survival of TFL-/- was comparable to the wild-type, Bcl2-Tg/TFL-/- died about 19 weeks earlier than Bcl2-Tg (Fig. 1). Both strains developed lymphadenopathy and splenomegaly similarly. No different microscopic finding was noted in lymph nodes, spleen, or bone marrow (BM). No additional malignancy was found in Bcl2-Tg/TFL-/- on autopsy. However, significant body weight loss appeared by 30 weeks in Bcl2-Tg/TFL-/- but not in Bcl2-Tg (Fig. 3). To identify what causes earlier death in Bcl2-Tg/TFL-/-, we carefully examined the phenotypic change of BM lymphocytes. We found a unique B220-IgM+ population in Bcl2-Tg BM, which was not found in wild-type. We speculated that TFL deficiency in this population might drive the deterioration in Bcl2-Tg/TFL-/-. To identify which mRNA was dysregulated by TFL deficiency, we comprehensively analyzed mRNA expression profiles in B220-IgM+ cells in both strains using cDNA microarray chip. Among several genes upregulated at least threefold in Bcl2-Tg/TFL-/- than Bcl2-Tg, we paid attention to CXCL13, the mRNA expression of which in Bcl2-Tg/TFL-/- was 4.19-fold higher than that in Bcl2-Tg (p=0.03). In fact, CXCL13 concentration in BM extracellular fluid as well as plasma in Bcl2-Tg/TFL-/- showed incredible increase in a logarithmic scale (Fig. 2). As a noteworthy event, body weight loss in Bcl2-Tg/TFL-/- followed the increase of CXCL13 in plasma by 30 weeks (Fig. 3). To confirm that TFL post-transcriptionally regulates CXCL13 mRNA through the degradation of its 3′UTR, we performed a reporter assay with a plasmid vector containing 3′UTR of CXCL13 mRNA. Co-transfection with a TFL expression vector showed decreased luciferase activity compared to the control. This suggests that TFL directly regulates CXCL13 mRNA via its 3′UTR degradation. This regulation occurs more prominently in B-cell lineage rather than myeloid or T-cell lineage, whereas IL-2 mRNA regulation occurs promiscuously. CXCL13 secretion was significantly increased in the culture supernatant of BM cells but not spleen cells derived from Bcl2-Tg/TFL-/-. We further sorted several cell populations, including B220-IgM+ in BM, and cultured them for 96 h. CXCL13 secretion from B220-IgM+ population was increased significantly compared to other populations. Thus, we concluded that B220-IgM+ cells in BM are the main producer of CXCL13 in Bcl2-Tg/TFL-/-. Loss of TFL-driven attenuation for excessive inflammation in lymphoma-bearing mice could contribute to the short survival. It is of interest whether high plasma CXCL13 directly affects cachexia and early death in Bcl2-Tg/TFL-/-. TFL deletion in human lymphoma might contribute not only to malignant transformation but also to a major B symptom, i.e., weight loss. Our findings may open a new window for the predictive factor on the prognosis of B-cell lymphoma and/or new therapeutic intervention by targeting CXCL13. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 769-769
    Abstract: The mobilization of hematopoietic stem/progenitor cells (HSC/HPCs) from the bone marrow (BM) to peripheral blood by granulocyte colony-stimulating factor (G-CSF) is an essential method in clinic. We have shown that the suppression of osteoblastic niche by β-adrenergic signal is critical for this phenomenon (Cell 2006; Cell Stem Cell 2013). Because G-CSF administration causes fever and back pain and these symptoms are ameliorated by non-steroidal anti-inflammatory drugs, we investigated the role of prostaglandin E2 (PGE2) in the BM microenvironment during G-CSF treatment. First, HPC (CFU-C) mobilization by G-CSF (125μg/kg/dose, every 12 hours, 8 divided doses) was significantly augmented in microsomal PGE syntase-1-deficient (mPGES-1-/-) mice (42% increase, n=16, p 〈 0.05), and strongly inhibited by exogenous administration of PGE2 (6mg/kg/day for 2 weeks) to wild-type (WT) mice (52%, n=8-9 p 〈 0.05). These data suggest that G-CSF induces mPGES-1-mediated PGE2 production, which suppresses the HPC mobilization. In the early phase (at 4 doses) of G-CSF administration, mPGES-1 mRNA in BM cells was upregulated (34% increase, n=5, p 〈 0.05). Furthermore, WT mice reconstituted with mPGES-1-/- BM showed higher HPC mobilization than control mice reconstituted with mPGES-1+/+ BM (2.2-fold increase, n=4, p 〈 0.05), which indicated that blood cells might be responsible for additional PGE2 synthesis. To address this, we examined the PGE2 production by ELISA from various lineage cell lines, such as neutrophil precursor 32D, macrophage RAW264.7, B cell Ba/F3, and T cell EL4. No increase was observed by G-CSF in any cell lines; whereas, isoproterenol induced PGE2 production significantly only in 32D culture supernatant (2.4-fold increase compared to vehicle treatment, n=4, p 〈 0.05) accompanied with drastic increase of mPGES-1 mRNA in the cells and norepinephrine showed a similar effect. Primary neutrophils sorted from the BM also demonstrated prompt PGE2 production by isoproterenol (3-fold increase compared to vehicle treatment, n=4, p 〈 0.05) but not by G-CSF. These data suggest that G-CSF-triggered high sympathetic tone stimulates the BM neutrophils to lead PGE2 production. We next assessed the exact roles of PGE2 in HPC mobilization. The inhibitory effect of PGE2 on HPC mobilization was completely abrogated in PGE2 receptor EP4-deficient (EP4-/-) mice, and the chimeric model generated by the reciprocal BM transplantation revealed that it was EP4 in microenvironment, but not in hematopoietic cells, that was critical for this effect. Since PGE2 did not change the CXCL12 behavior, we speculated that PGE2 increased another anchor in the niche, osteopontin (OPN). Immunofluorescence staining demonstrated upregulation of OPN by PGE2 and/or G-CSF in the endosteum, which was abolished in EP4-/- mice. Indeed, the inhibitory effect of PGE2 on HPC mobilization was canceled partially in OPN-/- mice and almost completely in anti-OPN antibody-treated WT mice. PGE2 also inhibited AMD3100-induced HPC mobilization, and this effect was canceled by anti-OPN antibody, which confirmed that PGE2-mediated niche modulation was independent of CXCL12 axis. To assess the induction of OPN by PGE2 directly, we fractionated non-hematopoietic (CD45-CD31-Ter119-) cells isolated from adult femur into three populations, i.e. Sca-1+ALCAM- immature mesenchymal cells, Sca-1-ALCAM- preosteoblasts that favorably support HPCs, and Sca-1-ALCAM+ mature osteoblasts that are most potent to maintain quiescent HSCs in vitro. PGE2 upregulated the OPN protein 2-fold in Sca-1+ALCAM- immature mesenchymal cells in cultures and more dramatically (6-fold) in Sca-1-ALCAM- preosteoblasts as assessed by flow cytometry. In sharp contrast, no OPN induction was observed in Sca-1-ALCAM+ mature osteoblasts. PGE2 failed to induce OPN in all three fractions from EP4-/- mice. In contrast to HPCs, the mobilization of long-term (6 months) repopulating HSCs was not altered in mPGES-1-/- and in PGE2-treated WT mice. This was consistent with the OPN induction profile in fractionated osteoblasts. These results suggest that PGE2 selectively regulates the osteoblastic niche for hematopoietic progenitors, but not for stem cells, by the induction of OPN via EP4 receptor. Collectively, we propose the inter-communication between the mature hematopoietic cells and the niche for their immature progenitors governed by the sympathetic nervous system. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 133, No. 15 ( 2019-04-11), p. 1619-1629
    Abstract: Myelofibrosis in myeloproliferative neoplasms (MPNs) with mutations such as JAK2V617F is an unfavorable sign for uncontrollable disease progression in the clinic and is complicated with osteosclerosis whose pathogenesis is largely unknown. Because several studies have revealed that macrophages are an indispensable supporter for bone-forming osteoblasts, we speculated that macrophages might play a significant role in the proliferation of collagen-producing myofibroblasts in marrow fibrotic tissues. Here, we show that myelofibrosis critically depends on macrophages whose differentiation is skewed by vitamin D receptor (VDR) signaling. In our novel myelofibrosis model established by transplantation of VDR+/+ hematopoietic stem/progenitor cells into VDR−/− mice, donor-derived F4/80+ macrophages proliferated together with recipient-derived α-smooth muscle actin–positive myofibroblasts, both of which comprised fibrotic tissues with an indistinguishable spindle-shaped morphology. Interfering VDR signals, such as low vitamin D diet and VDR deficiency in donor cells as well as macrophage depletion prevented myelofibrosis in this model. These interventions also ameliorated myelofibrosis in JAK2V617F-driven murine MPNs likely in a transforming growth factor-β1– or megakaryocyte-independent manner. These results suggest that VDR and macrophages may be novel therapeutic targets for MPNs with myelofibrosis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 721-721
    Abstract: Abstract 721 Hematopoietic stem/progenitor cells (HSPCs) are released from the bone marrow (BM) to the circulation by granulocyte-colony stimulating factor (G-CSF) via sympathetic nervous system (SNS)-mediated osteoblast suppression (Katayama et al. Cell 2006). We further elucidated that vitamin D receptor is essential for this neuronal control of endosteal niche (Kawamori et al. Blood 2010). Osteoblasts are known to adopt three fates: die by apoptosis, become bone-lining cells, or become embedded in osteoid and then in mineralized bone matrix to terminally differentiate into osteocytes, which constitute more than 95% of bone cells. Osteocytes have been shown to control the functional balance between osteoblast and osteoclast via mechanotransduction. In order to address the role of bone-embedded osteocytes in HSPCs niche function, we first quantified mRNA expression of bone-related genes in the femur of wild-type (WT) mice to examine if osteocytic function changes during G-CSF treatment (125μg/kg/dose, 8 divided doses, every 12 hours). Whereas markers relating to osteoblast function, osteocalcin and osteopontin, started to decrease late at 6 doses of G-CSF administration when mild mobilization of HSPCs had occurred, osteocyte-specific genes, including neuropeptide y, SOST, MEPE, E11/gp38 and Phex, were rapidly suppressed at 1 dose when no mobilization was observed. These data suggest that osteocytes respond to G-CSF with altered gene expression much earlier than osteoblasts. Further, the number and thickness of osteocyte projections extending toward the endosteal surface were markedly reduced, as assessed by fluorescently labeled phalloidin, at 8 doses of G-CSF treatment when full mobilization was achieved; these morphological changes were observed specifically in newly-embedded osteoid osteocytes, but not in mature osteocytes embedded deep inside mineralized bone. These findings suggest that osteoid osteocytes may sense the signal triggered by G-CSF. We confirmed the presence of β2-adrenergic receptor in osteoid osteocytes and tyrosine hydroxylase-positive nerve fibers in the vicinity by immunofluorecence staining, suggesting that osteoid osteocytes may be regulated by SNS. To directly address osteocyte involvement in G-CSF-induced mobilization, we utilized a transgenic (TG) mice in which inducible and specific ablation of osteocytes is achieved through targeted expression of diphtheria toxin (DT) receptor under DMP-1 promoter. A single injection of DT in TG mice generates “osteocyte-less (OL)” mice. We found that mobilization by G-CSF was drastically impaired in OL mice for progenitors (CFU-Cs, mean±SEM, WT vs Tg: 1673±271 vs 242±94/ml blood, n=6-13, p 〈 0.01; lineage-Sca-1+c-kit+ (LSK) cells, WT vs Tg: 6878±1209/ml vs 1763±502/ml, n=6-13, p 〈 0.01) and stem cells (repopulating units at 4 months, WT vs Tg: 2.5±0.7 vs 0.5±0.2, n=6-7, p 〈 0.05), while the OL BM showed normal HSPC number. The levels of CXCL12 mRNA and protein in BM and bone were markedly decreased during G-CSF treatment even in OL mice despite the mobilization defect, and a CXCR4 antagonist AMD3100 induced mobilization normally in the absence of osteocytes. Thus, osteocytes embedded within the bone are indispensable for G-CSF-induced mobilization through a CXCL12-independent mechanism. Although most of bone-related genes exhibited drastic decreases following G-CSF treatment, we found that fibroblast growth factor 23 (fgf23) mRNA displayed a 4-fold increase at 6 doses of G-CSF. FGF23 is mainly produced by osteocytes and Klotho is an obligate coreceptor for FGF23 to bind and activate FGF receptors. Since we confirmed that klotho hypomorphic (kl/kl) mice showed remarkably disrupted osteocyte network, we injected G-CSF into these mice. As we expected, G-CSF induced virtually no mobilization in kl/kl mice while the number of HSPCs in the BM remained comparable to control mice. Collectively, our results demonstrate a novel function of bone-embedded osteocytes as a critical regulator of HSPC trafficking perhaps by controlling the endosteal niche and establish the important physiologic function of skeletal tissue for hematopoietic microenvironment. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 340-340
    Abstract: Myelofibrosis (MF) is characterized as the proliferation of fibroblasts resulting in the replacement of marrow space by collagenous connective tissue fibers and is also known to be frequently complicated with osteosclerosis. However, the pathogenesis of this phenomenon is largely unknown. Allogeneic stem cell transplantation is the therapeutic choice in clinic with complete resolution of the disorder despite the recognition as microenvironment problem by the hematologists. Here, we establish a novel inducible murine MF model and propose a new paradigm in the pathophysiology of MF. Vitamin D receptor-deficient (VDR-/-) mice display rickets type II, which can be restored by high calcium diet, resulting in their usefulness as transplant recipients. We transplanted wild-type (WT) bone marrow (BM) cells into lethally irradiated VDR-/- mice and found that the vast majority died due to BM failure (n=25, median survival 66 days), though for the time being hematopoiesis was reconstituted during the first month after transplantation. The homing of long-term repopulating hematopoietic stem cells (HSCs) into marrow space was normal at 3 hrs, but the HSCs selectively disappeared at 3 weeks after transplantation as assessed by competitive reconstitution. Since VDR-/- mice showed normal hematopoiesis in steady-state, we transplanted VDR-/- BM into lethally irradiated VDR-/- recipients, which resulted in survival with no BM failure. Thus, engraftment failure of the WT HSCs in VDR-/- recipients did not originate from radiation-induced irreversible niche destruction, but it was likely intrinsic to donor HSC behavior. Histological analysis of femurs at 1-2 months after transplantation of WT BM into VDR-/- recipients revealed that the BM cavity was occupied by spindle-shaped cells and silver fibers. There was also prominently increased trabecular bones only in the metaphysis; whereas, normal hematopoietic appearance was observed in the diaphysis. This was initiated by hematopoietic cells since CD45+lin-c-kit+ cells isolated from WT CAG-EGFP transgenic mice as donor source induced the same MF and osteosclerosis in VDR-/- recipients. Metaphysial BM was replaced by monotonous fibroblastic cells in this particular setting; however, these cells were composed of two distinct populations with mutual distribution, 1) GFP+F4/80+ donor-derived macrophages and 2) GFP-osterix+ (or runx2+) host-derived preosteoblasts. These two distinct cells were tangled around each other equally in the fibrotic tissue area, and preosteoblasts were dominant in the osteoscrelotic area. Both populations were positive for αSMA. Since VDR-/- donor cells did not induce MF and it was reported that the level of 1,25(OH)2D3 (vitamin D3) is extremely high in VDR-/- mice, we hypothesized that WT HSCs exposed to high vitamin D3 might differentiate into αSMA+ macrophages and proliferate in vivo. Furthermore, since it is widely known that macrophages are strong supporter of osteoblasts, these cells might drive osteoblast-lineage cells. In the culture of hematopoietic stem/progenitor cell line FDCP-mix, vitamin D3 induced strong F4/80 upregulation together with partial αSMA induction, and MCP1 secretion in the culture supernatant was highly induced depending on vitamin D3 concentration. Strikingly, a diet low in vitamin D3 prevented the development of MF with osteosclerosis in VDR-/- recipients transplanted with WT BM. Thus, in our novel MF model, the true pathogenesis is likely that αSMA+ macrophages as MF-initiating cells perhaps directly differentiated from HSCs through vitamin D3 stimulation, drive the activity of preosteoblasts as a major producer of collagen fibers, and initiate osteosclerosis. We next examined whether this new paradigm could be applied for JAK2 V617F transgenic mice, which display MF with osteosclerosis, and human MF patients (n=3 including two cases with JAK2 V617F mutation). As we expected, marrow fibroblastic cells of both mouse genetic model and human patients were similarly composed of αSMA+CD169+ (or CD163+) macrophages and αSMA+ osteoblastic lineage cells with osterix or runx2 expression. Our study may explain why BMT is useful in clinic because MF is likely initiated by hematopoietic cells. We propose the modulation of vitamin D3 signaling or macrophage-targeted strategies as novel therapeutic choices for MF. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 4586-4586
    Abstract: In allogeneic hematopoietic cell transplantation (allo-HCT), graft versus host disease (GVHD) remains a major cause of non-relapse mortality. Although methotrexate (MTX) combined with a calcineurin inhibitor (CI) is the current standard for GVHD prophylaxis, several recent studies have also reported the utility of mycophenolate mofetil (MMF) combined with CI, in terms of earlier hematological recovery and less mucositis with a similar incidence of GVHD. In Asian populations, however, there have been few prospective studies with MMF and CI as GVHD prophylaxis, and we thus carried out this Japanese multicenter prospective trial of allo-HCT with MMF and CI. Methods From April 2010 to September 2012, we prospectively registered patients with hematological malignancy who received their first T cell-replete allo-HCT from HLA-matched related donors (MRD group) or 8/8 or 7/8 matched unrelated volunteer donors (URD group). The primary endpoint was the cumulative incidence of grade II to IV acute GVHD at day 100. The expected and threshold incidences were 30% and 60% in MRD group, and 40% and 65% in URD group, respectively. With a statistical power of 80% and a one-sided, type I error of 5%, the each number of eligible patients required for these studies was calculated to be 17 and 25 in MRD and URD groups, respectively, and the each maximal number of registerable patients was set to be 30 and 45, respectively. As of June 2013, the primary endpoint for evaluation of all patients has been attained. As GVHD prophylaxis, MMF (500mg three times/day) and cyclosporine were used in MRD group, and MMF (1000mg three times/day) and tacrolimus were used in URD group. The MMF dose was tapered according to plan, starting on day 30–40 with cessation by day 100. The cyclosporine and tacrolimus were continued until days 60 and 100 and then tapered and stopped on days 150 and 180, respectively, unless GVHD developed. Results There were 20 patients (median age:47.5) in the MRD group and 31 patients (median age:45) in the URD group (HLA 8/8 matches:23, HLA 7/8 matches:8). In the MRD and URD groups, acute leukemia was present in 90% and 65%, and standard risk disease comprised 90% and 65%, respectively. In the MRD and URD groups, 75% (15/20) and 55% (17/31) received standard myeloablative conditioning (BuCy or CyTBI), and the remainder received reduced intensity conditioning (FluBu±TBI or FluMel±TBI). In the MRD group, peripheral blood stem cells and bone marrow were used in seven and 13 patients, respectively. In the URD group, all 31 patients received allo-HCT from a bone marrow donor. The cumulative incidences of grades II to IV and III to IV acute GVHD on day 100 were 45% (90% confidence interval [CI]:26.9-63.1) and 15% in the MRD group, respectively. The primary endpoint was not achieved in the MRD group, although the dose of MMF in the MRD group (1.5g/day) was lower than the URD group (3g/day). In contrast, the cumulative incidences of grades II to IV and III to IV acute GVHD on day 100 were 19.4% (90%CI:8.0-30.8) and 6.5% in the URD group, respectively. The primary endpoint was achieved in the setting of allo-HCT form URD. In the MRD and URD groups, cumulative incidences of neutrophil engraftment were 94.7% and 96.8%, and the median times to neutrophil engraftment were 12 days (range:10–13) and 13 days (range:8–26), respectively. Although one patient in the MRD group and 3 patients in the URD group experienced secondary graft failure, all of them recovered with dose adjustment of myelosuppressive drugs including MMF. Grade 3 stomatitis occurred only in 10% of the MRD group and 13% of the URD group, and there was no grade 4 stomatitis in either group. The cumulative incidences of late onset acute GVHD and chronic GVHD at one year were 12.5% and 37.5% in the MRD group, and 7.4% and 29.6% in URD group, respectively. With a median follow-up of 589 days in surviving patients, 1-year overall survival was 89.1% in the MRD group and 86.0% in the URD group. The 1-year cumulative incidences of non-relapse mortality and relapse were 10.9% and 11.9% in the MRD group, and 6.5% and 31.6% in URD group, respectively. Conclusion Our study confirmed that GVHD prophylaxis with MMF plus CI was associated with earlier hematological recovery and less mucositis. The use of MMF (3g/day) plus tacrolimus was a feasible and effective option as GVHD prevention in allo-HCT from 7/8 or 8/8 HLA-matched URD. Further studies will be needed to clarify the optimal dose of MMF in allo-HCT from MRD. Disclosures: Nakane: Chugai Pharma: Travel/accommodations/meeting expenses Other. Off Label Use: CellCept (mycophenolate mofetil). This drug was a primary drug to be evaluated for GVHD prophylaxis in this study. Nakamae:Chugai Pharma: Travel/accommodations/meeting expenses Other. Hino:Chugai Pharma: Honoraria, Research Funding, Travel/accommodations/meeting expenses Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 116, No. 25 ( 2010-12-16), p. 5528-5535
    Abstract: Hematopoietic stem/progenitor cells (HSPCs) are released from the bone marrow to the circulation by the cytokine, granulocyte colony-stimulating factor, via sympathetic nervous system (SNS)–mediated osteoblast suppression. Because the orientation of HSPCs in their osteoblastic niche is reported to be guided by [Ca2+], we speculated on a cooperation between the calcium-regulating hormones and SNS in the regulation of HSPC trafficking. Here, we present the severe impairment of granulocyte colony-stimulating factor–induced osteoblast suppression and subsequent HSPC mobilization in vitamin D receptor (VDR)–deficient mice. In osteoblasts, functional VDR possessing, at least in part, a transcriptional activity, was specifically induced by β2-adrenergic receptor (AR) agonists. While β2-AR agonists transiently increased mRNA expression of Vdr and its downstream gene, Rankl, 1α,25-dihydroxyvitamin-D3 sustained the β2-AR–induced Rankl expression at high level by stabilizing VDR protein. These data suggest that VDR is essential for durable β2-AR signaling in the stem cell niche. Our study demonstrates not only a novel function of VDR as a critical modulator of HSPC trafficking, but also the presence of a SNS-mediated, bone-remodeling mechanism through VDR. VDR contributes to brain-bone-blood integration in an unanticipated way distinct from other classical calcium-regulating hormones.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 277-277
    Abstract: Abstract 277 Eph is the largest known family of receptor tyrosine kinases, and bind to a cell surface-associated ligand, ephrin on neighboring cells upon direct cell-cell contact. The ensuing bidirectional signals have been recognized as a major form of contact-dependent cell communications, such as cell attraction and repulsion to control accurate spatial and temporal patterning in the development of the central nervous system. EphBs, EphB6 in particular, are expressed in T cells and its specific ligand, ephrin-B2 has been shown to act as a costimulatory molecule for the T cell receptor (TCR)-mediated cell proliferation. Recently, another remarkable feature of ephrins, a concentration-dependent transition from promotion to inhibition in axon growth has emerged in ephrin-As. Thus, we postulated that this type of ligand concentration dependent functional transition would be suitable for the delicate tuning of immune responses to avoid reckless drive. To figure this out, we carefully evaluated the costimulatory effects of ephrin-Bs by using murine primary T cells. Interestingly, low doses of solid phase ephrin-B1 as well as ephrin-B2 (at up to 5μ g/ml) costimulated, to the comparable level with anti-CD28, T cell proliferation induced by suboptimal concentration of immobilized anti-CD3 antibody, but high concentrations of ephrin-B1/B2 inhibited the TCR-mediated proliferation significantly (by approximately 70% reduction from the baseline at 20μ g/ml). The similar concentration-dependent transition from coactivation to inhibition was also observed under the optimal CD3 stimulation. The concentration-dependent biphasic effects, positively at low concentration and negatively at high concentration, by ephrin-B1/B2 in T cell activation were confirmed in the cytokine production such as TNF-α, IL-2, and IFN-γ. In contrast, ephrin-B3 showed steadily increasing stimulatory effect even in higher concentrations in proliferation and cytokine production. We speculated that these unique modulations were partly mediated by EphB6 because EphB6 transfected in HEK293T cells has been shown to exert biphasic effects in cell adhesion and migration in response to different concentrations of ephrin-B2. T cell derived from Ephb6 -/- mice showed decreased CD3-stimulated cell proliferation as reported previously. However, the unique comodulatory pattern by each ephrin-B was virtually preserved in Ephb6 -/- T cells. Since the functions of Eph family could be redundant, we further investigated by generating multiple EphB knockout mice lacking four genes, Ephb1, Ephb2, Ephb3 and Ephb6. Surprisingly, no further alteration was observed in T cells from the quadruple knockout mice compared to the Ephb6 single deficiency. We also confirmed that EphA4, an exception in EphA receptor family which binds ephrin-Bs, was not expressed in T cells by RT-PCR. Taken together with the fact that EphB5 does not exist in mammals, the unique comodification by ephrin-Bs might be regulated by EphB4. Next, we examined the cross-talk of EphB forward signaling with TCR pathway. The inhibitor of p38MAPK and p44/42MAPK significantly reduced the TCR-mediated proliferation, but did conserve the concentration-dependent effects of ephrin-B1/B2, suggesting the interference with EphB signaling in TCR signal transduction at the upstream of MAPKs which are important for cell growth and survival. Immuno-blot analyses revealed that high concentrations of ephrin-B1/B2, but not ephrin-B3, clearly inhibited the anti-CD3 induced phosphorylation of Lck and its downstream signaling molecules such as ZAP70, c-Raf, MEK1/2, Erk, and Akt, although the phosphorylation of CD3ζ was not inhibited by high concentrations of any ephrin-Bs. These data suggest that Eph signaling upon stimulation by high concentrations of ephrin-B1/B2 may engage in negative feedback to TCR signals via Lck. The present studies demonstrate that TCR-mediated primary T cell activation may be highly governed by EphB/ephrin-B axis with a complexity determined by the combination as well as the concentration of different ephrin-Bs expressed in immunological microenvironments. EphB-involved in negative feedback of T cell activation could be a novel therapeutic target to inhibit the most proximal TCR signaling molecule, Lck. The generation of strong signaling molecule which mimics ephrin-B1/B2 would be an effective strategy to control T cell mediated immune disorders. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 137, No. 11 ( 2021-03-18), p. 1457-1467
    Abstract: Fibroblast growth factor 23 (FGF-23) hormone is produced by bone-embedded osteocytes and regulates phosphate homeostasis in kidneys. We found that administration of granulocyte colony-stimulating factor (G-CSF) to mice induced a rapid, substantial increase in FGF-23 messenger RNA in bone marrow (BM) cells. This increase originated mainly from CD45−Ter119+CD71+ erythroblasts. FGF-23 protein in BM extracellular fluid was markedly increased during G-CSF–induced hematopoietic progenitor cell (HPC) mobilization, but remained stable in the blood, with no change in the phosphate level. Consistent with the BM hypoxia induced by G-CSF, low oxygen concentration induced FGF-23 release from human erythroblast HUDEP-2 cells in vitro. The efficient mobilization induced by G-CSF decreased drastically in both FGF-23−/− and chimeric mice with FGF-23 deficiency, only in hematopoietic cells, but increased in osteocyte-specific FGF-23−/− mice. This finding suggests that erythroblast-derived, but not bone-derived, FGF-23 is needed to release HPCs from BM into the circulation. Mechanistically, FGF-23 did not influence CXCL-12 binding to CXCR-4 on progenitors but interfered with their transwell migration toward CXCL-12, which was canceled by FGF receptor inhibitors. These results suggest that BM erythroblasts facilitate G-CSF–induced HPC mobilization via FGF-23 production as an intrinsic suppressor of chemoattraction.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 2206-2206
    Abstract: To prevent acute graft-versus-host disease (GVHD) and graft failure, mycophenolate mofetil (MMF) has been employed as a substitute of methotrexate in allogeneic hematopoietic stem cell transplantation (all-SCT). However, the dosing strategy of MMF after all-SCT remains to be established. In this study, we investigated the optimal MMF dosing until day 30 based on pharmacokinetic studies in 28 Japanese allo-SCT patients. For better clinical outcomes of MMF, higher mycophenolic acid (MPA) plasma levels are proposed to be desirable. Therefore, the first 11 patients (group A) received MMF orally every 12 hours at an escalated dose from 15 mg/kg to 25 mg/kg (maximum total daily dose 3000 mg), according to real-time pharmacokinetic monitoring of the total MPA area under the curve (AUC). However, the dose escalation in each individual did not always increase the AUC. Then, MMF was given orally at a fixed dose of 1000 mg every 8 hours in the subsequent 17 patients (group B). The pharmacokinetic data revealed that the increase of dosing frequency could statistically keep higher MPA plasma levels, as reflected in concentration at steady state (Css: group A vs. group B; 1.12 vs. 2.18 μg/ml on day 16, P = 0.003) or trough value (Ctrough: 0.18 vs. 0.56 μg/ml on day 16, P = 0.019). These results indicate that MMF administration of every 8 hours would be better than that of every 12 hours even in the same total daily dose until day 30. We further assessed the safety and efficacy of extended MMF administration beyond day 30 retrospectively. Twenty-five patients ceased MMF at day 30, whereas 16 patients were subjected to extended regimen depending on the individual risk factors for GVHD (median dosing period 64.5 days, 50–94 days). No severe adverse events were observed in both groups. While the cumulative incidence (CI) of more than grade I acute GVHD at day 100 was comparable between the two groups (72.1 % vs. 62.5 %, P = 0.63, Figure 1A), the CI of grade II to IV acute GVHD was lesser in the latter group (42.3 % vs. 12.5 %, P = 0.045, Figure 1B). These results suggest that MMF should be administered every 8 hours until day 30 after allo-SCT, followed by extending MMF administration at least until day 60 as a preemptive therapy for moderate- to severe-acute GVHD. This strategy might be very useful for double UCB transplantation under non-myeloablative conditioning especially, because the transplantation is reported to develop severe acute GVHD frequently. Figure Figure
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...