GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society of Hematology  (6)
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 24 ( 2015-12-10), p. 2585-2591
    Kurzfassung: Pegylated IFNα induces hematologic and molecular remission in CALR-mutated ET patients. The analysis of additional mutations highlights the presence of subclones with variable evolutions during IFNα therapy.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2015
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 13166-13167
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2022
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 13117-13118
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2022
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Society of Hematology ; 2021
    In:  Blood Vol. 138, No. Supplement 1 ( 2021-11-05), p. 4607-4607
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 4607-4607
    Kurzfassung: Introduction Therapy-related leukemia or secondary leukemia are the terms that describe the occurrence of leukemias following exposure to hematotoxins and radiation to emphasize the difference from leukemia that arises de novo . Many leukemogenic agents have been described, including radiation, alkylating agents, among others . Certain host factors contribute to this predisposition, such as polymorphisms in drug-metabolizing enzymes and inherited cancer predisposition syndrome . These rising leukemias have no specific biologic features that set them apart from de novo malignancies . Therapy-related acute myeloid leukemia (t-AML) has extensive literature to support it. In contrast, therapy-related chronic myeloid leukemia (t-CML) possibly because it originates from a more potent premature progenitor cell . Radioactive iodine (RAI) with I 131 has an established role in managing differentiated thyroid carcinoma, namely papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma. However, concerns have been raised about its possible carcinogenic effects. Papers of t-CML following I 131 are increasingly reported, and thus this review is dedicated to highlighting it. Designs and methods All reports from the 1960s to date related to CML following RAI therapy were searched on Google Scholar and PubMed. Different search terms with Boolean function to search for the relevant articles. All articles were in English. Results We identified ten articles reporting 12 cases, as presented in table 1. We found that most of the reports were for men (8/12) under the age of 60 years (10/12), and the primary tumor was of PTC characteristics (5/12 were PTC, and 3/12 were mixed papillary-follicular carcinoma). The dose of I 131 ranged between 30 millicuries (mCi) to 850 mCi; the mean dose was 331 mCi. Also, t-CML developed within the first ten years (9/12), mainly between 4-7 years post-exposure. Discussion A few reports found a statistically significant increased risk of leukemia following RAI therapy; some suggested a relative risk of 2.5 for I 131 vs. no I 131 . Observed findings from these studies include a linear relationship between the cumulative dose of I 131 and the risk of leukemia, doses higher than 100 mCi were associated with a greater risk of developing secondary leukemia, and most of the leukemias developed within the initial ten years of exposure . The precise mechanism through which RAI provokes leukemia is largely unclear. Possibly, by inducing oxidative stress, reactive oxygen species production results in damage to the cellular membrane, DNA strand breakage, DNA base alterations, and eventually cancer in the instances of poor repair of damage . Many questions remain open. For example, most of the subjects had PTC histopathology in our review. Is there a relationship between PTC and the emergence of leukemia? This question is relevant because some reported that PTC has a mutation of the RET protooncogene, which has been linked to leukemia, prostate and breast cancers. Conclusion Although the risk of t-CML appears to be low based on current reports, it should not be disregarded. Further studies are needed to establish or refute a causal relationship. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2021
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Society of Hematology ; 2022
    In:  Blood Vol. 140, No. Supplement 1 ( 2022-11-15), p. 3963-3964
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 3963-3964
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2022
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 5427-5427
    Kurzfassung: Background: Chronic Myelocytic Leukemia (CML) is a clonal myeloproliferative disorder characterized by constitutive phosphorylation of Protein Tyrosine kinases (PTKS) that continuously activates multiple proliferative and antiapoptotic signaling pathways. Protein Tyrosine Phosphatases (PTPs) on the other hand is potential natural inhibitory mechanism for regulating the tyrosine kinase activities in which phosphorylation is reciprocally controlled and maintained in equilibrium state by PTKs and PTPs. As a member of PTPs family, Protein Tyrosine Phosphatase Receptor Gamma (PTPRG) was found to act as a tumor suppressor gene. This negative regulatory mechanism of PTPRG was observed to be down-regulated and disabled in CML and one of the possible mechanisms that alter the negative regulatory effect of PTPs is mutations. Several mutations have been identified in PTPs in many different leukemias such as Acute Myeloid Leukemia (AML), Juvenile MyeloMonocytic Leukemia (JMML), Myelodysplasic Syndrome (MDS), B-cell Acute Lymphoblastic Leukemia (B-ALL) and these mutations are associated with hyper-cellular proliferation, disease progression and poor outcome. However, relatively little is known about PTPRG mutations and no studies on CML are available in the literature while mutations inBCR-ABL1tyrosine kinase have been extensively characterized. Thus, understanding the role of PTPRG in antagonizing the PTK phosphorylation of BCR-ABL1 will be important to determine its role in CML development and progression. Aim: 1) To identify potential genetic alterations causing inactivation of PTPRG and 2) correlate the PTPRG findings with patients' response to the Tyrosine kinase Inhibitors. Methods: 16 CML patients, 9 from Qatar and 7 from Italy respectively, were studied for PTPRG mutations by exome sequencing. Custom primers were designed for Human PTPRG gene (5 Kb of exonic region of interest) using Ion AmpliSeq Designer. Target regions were enriched and amplified for the 16 DNA samples using Ion AmpliSeq Library kit 2.0. The amplicons were partially digested with FuPa reagent and phosphorylated prior to ligation of Ion Xpress Barcode Adapters followed by cleanup using HighPrep reagent. The adapter ligated molecules were enriched with adapter specific primers using a limited cycle PCR followed by a cleanup using HighPrep reagent. The final libraries were quantified on Qubit Flurometer using Qubit dsDNA HS Assay Kit and Agilent Bioanalyzer using Agilent High Sensitivity DNA Kit. All samples were pooled according to the concentrations on the Bioanalyzer and loaded on Ion 318TM Chip kit V2 to be sequenced on Ion Personal Genome Machine (PGM) system. European Leukemia Net (ELN) 2013 criteria were employed to assess the response/resistance of patients to treatment. Responses are defined at the hematological, cytogenetic and molecular levels. Patients response was classified into optimal and failure Results: Four mutations/variants were identified in PTPRG genes, three were missense Y92H, G574S, S561Y and 1 was frameshift Y285fs in the 16 CML patients. PTPRG Y92H was identified in 5 (1 Homozygous and 4 heterozygous alleles) patients and the 5 patient failed the Imatinib Mesylate (IM) treatment. On the other hand, The PTPRG G574S was identified in 6 (2 homozygous and 4 heterozygous alleles) patients. Out of the 6 patients, 4 were classified as failure to the treatment and 2 responded optimally. In addition, the PTPRG S561Y and Y285fs were identified on 1 and 3 patients respectively and these patients responded optimally to IM treatment. Discussion and Conclusions: This is the first prospective pilot study to investigate PTPRG gene mutations as underlying mechanism to explain treatment failure. Our preliminary data showed that the identified variant PTPRG Y92H might be associated with IM failure although it has been reported as Single Nucleotide Polymorphisms (SNPs) (rs62620047) and this could be attributed that some polymorphisms might behave like a mutation. On the other hand, PTPRG G574S variant (rs2292245) showed various clinical outcomes regardless to its allele zygosity as 67% (4/6) of patients failed the TKIs treatment. From the results of our pilot study we recommend carrying out PTPRG sequencing in a significantly larger cohort of patients to further explore and pinpoint the crucial mutations that can be correlated with CML resistance/response to treatment. Disclosures No relevant conflicts of interest to declare.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2016
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...