GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (3)
  • 1
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 2550-2550
    Abstract: MLL (Mixed Lineage Leukemia) is a proto-oncogene that is mutated in a variety of human leukemias. Oncogenic MLL fusion genes created by chromosomal translocations cause acute myeloid or lymphoid leukemias often in infants. MLL, a homolog of Drosophila trithorax, displays intrinsic histone methyltransferase activity and functions genetically to maintain embryonic Hox gene expression. But its regulatory mechanism is poorly understood. Our previous studies showed that MLL undergoes a variety of post-translational modifications to assume its mature form. Most uniquely, MLL is proteolytically processed after translation into two major polypeptides, MLL-N and MLL-C, which possess opposite transcriptional properties and associate with each other through their intra-molecular interaction domains. In order to understand the function of MLL and its regulatory mechanism, we performed the biochemical purification of MLL. MLL-C was found to associate with a cohort of proteins shared with the yeast and human SET1 histone methyltransferase complexes, including ASH2L (highly conserved protein of unknown function whose Drosophila homolog genetically interacts with trithorax), WDR5 and RBBP5 (two WD repeat proteins implicated in histone binding) to form an MLL-C histone methyltransferase (HMT) sub-complex centered on its SET domain. Two other members of the novel MLL complex identified here are Host Cell Factor 1 (HCF-1), a transcriptional coregulator, and the related HCF-2, both of which specifically interact with a conserved binding motif in the MLL-N (p300) subunit of MLL and provide a potential mechanism for regulating its antagonistic transcriptional properties. Menin, a product of the MEN1 tumor suppressor gene, is also a component of the 1 MDa MLL complex. Abrogation of menin expression phenocopies loss of MLL, and reveals a critical role for menin in the maintenance of Hox gene expression. Oncogenic mutant forms of MLL retain an ability to interact with menin, but not other identified complex components. These studies link the menin tumor suppressor protein with the MLL histone methyltransferase machinery, with implications for Hox gene expression in development and leukemia pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2016
    In:  Blood Vol. 128, No. 22 ( 2016-12-02), p. SCI-14-SCI-14
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. SCI-14-SCI-14
    Abstract: Interactions between the genome and its cellular and signaling environments, which ultimately occur at the level of chromatin, are the key to comprehending how cell-type-specific gene expression patterns arise and are maintained during development or are misregulated in disease. Central to the cell type-specific transcriptional regulation are distal cis-regulatory elements called enhancers, which function in a modular way to provide exquisite spatiotemporal control of gene expression during development. We are using a combination of genomic, genetic, biochemical, and single-cell approaches to investigate how enhancers are activated in response to developmental stimuli, how they communicate with target promoters over large genomic distances to regulate transcriptional outputs, what is the role of chromatin modification and remodeling in facilitating or restricting enhancer activity and how regulatory sequence change leads to the phenotypic divergence in humans. I will discuss our latest results on the mechanisms underlying enhancer function and gene regulation in development and disease. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 3-3
    Abstract: The induction of the master erythroid transcription factor, GATA1 during early erythropoiesis is critical for efficient red blood cell production. However, GATA1 is expressed at low levels in hematopoietic stem cells (HSCs) and is moderately induced at both the common myeloid progenitor (CMP) and megakaryocyte/erythroid progenitor (MEP) stages prior to lineage commitment. Diamond Blackfan Anemia is a rare disease, usually associated with ribosomal gene mutations, leading to significant decrease in GATA1 expression and block in early committed erythroid differentiation. Mild defects in other myeloid lineages are also observed, with limited clinical relevance. The importance of GATA1 downregulation in disease pathogenesis is manifested by rare patients with DBA carrying GATA1 mutations. To understand signaling pathways that contribute to the pathogenesis DBA, we perform RNA-seq with mRNA from human CD34+ fetal liver cells and found that the chromatin organizer, Special AT-rich sequence binding protein 1 (SATB1) was prematurely downregulated. Our results further demonstrated that sustained SATB1 expression is critical to maintain required levels of GATA1 protein at both the CMP and MEP stages of differentiation, but not in committed erythroid progenitors. In mice, SATB1 is modestly expressed in HSCs and upregulated during lymphopoiesis. SATB1 is downregulated during myeloid and erythroid differentiation and antagonizes myeloid and erythroid expansion. However, in human hematopoietic stem and progenitor cells (HSPCs), SATB1 is required for efficient expansion of these lineages. SATB1 maintains 78% expression in human MEPs, but is undetectable in early committed erythroid progenitors. In RPS19-insufficient human HSPCs, SATB1 was downregulated to 22% in MEPs (p=0.02). Re-expression of SATB1 corrected a significant subset of deregulated mRNAs, including GATA1 regulators. In the absence of SATB1, one such GATA1 regulator, heat shock protein 70 (HSP70), failed to be induced in ribosome-competent human MEPs, reducing GATA1 protein expression by 35.7% (p= 0.026). Concurrently, MEP expansion was inhibited by 64.5% (p=0.023), reducing erythroid and megakaryocyte expansion by 18.2% (p=0.024) and 20.4% (p=0.183) respectively. SATB1 facilitated the formation of chromatin loops linking together an enhancer element with HSP70 promoters required for HSP70 induction in early differentiation. Although GATA1 is significantly upregulated in committed erythroid progenitors, RPS19-insufficient human CD235+ erythrocytes express GATA1 28.4% of controls (p= 0.011). SATB1 re-expression increased GATA1 expression to 31.4% (p=0.089). Similarly, SATB1 re-expression increased CD235+ expansion from 13.9% to 39.5% (p=0.02) compared to controls. Our data indicate that premature SATB1 downregulation contributes to erythroid failure in DBA by reducing MEP expansion, but aberrant GATA1 expression observed in more mature erythrocytes is predominantly SATB1-independent. However, SATB1-re-expression improved CD11b+ myeloid expansion from 81.2% to 90.4% (p=0.045) and CD41a+ megakaryocyte expansion from 76.7% to 214.7% (p=0.038) respectively. Our results demonstrate that SATB1 plays an important role in human hematopoiesis and is an important regulator of GATA1. Disclosures Glader: Agios Pharmaceuticals, Inc.: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...