GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (6)
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2011
    In:  Blood Vol. 118, No. 21 ( 2011-11-18), p. 3173-3173
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3173-3173
    Abstract: Abstract 3173 Background and Purpose: Deferasirox (DFX) is an oral iron chelator that enables effective chelation by once daily administration.Since the introduction of DFX, iron chelation therapy (ICT) for transfusional iron overload has attracted increased attention. It is known that excess iron increases oxidative stress and affects various organs, such as the liver, heart and endocrine glands, negatively. Sufficient ICT can remove excess iron and improve organ dysfunction in iron-overloaded patients, and accumulating data has indicated that efficient ICT improves the survival of transfusion-dependent patients with myelodysplastic syndromes (MDS). Recently, we experienced a case of MDS with transfusional iron overload in which the hematopoietic data improved unexpectedly after administration of DFX without any other specific treatments (Okabe H et al. Rinsho Ketsueki, 2009). An increasing number of similar cases has been reported. This clinical observation indicates that iron overload could also affect the hematopoietic system unfavorably, via, as yet, unknown mechanisms. Methods and Results: We generated iron-overloaded mice to investigate how iron overload affects hematopoiesis in vivo. C57BL6 mice were injected with a total of 200 mg of iron dextran, intraperitoneally over 4 weeks. The iron-overloaded mice showed pigmented skin and hepatosplenomegaly, and histological examination showed excess iron deposition in the bone marrow, liver, spleen and heart. The serum and organ iron concentrations in these mice markedly increased. However, the iron-overloaded mice did not show any significant changes in peripheral blood counts or the proportion of immature hematopoietic cells in the bone marrow. To further examine the effects of excess iron on the biological functions of hematopoietic stem and progenitor cells (HSPCs), we performed bone marrow transplantation (BMT) assays. First, to assess the hematopoietic reconstitutional capacity of the HSPCs of iron-overloaded mice, we transplanted bone marrow cells (1×106 cells) from iron-overloaded mice or normal mice into lethally irradiated normal recipient mice along with the same number of normal competitor cells. We found no significant difference in hematopoietic reconstitution between the iron-overloaded donor cells and the normal donor cells, suggesting that the hematopoietic reconstitutional capacity of HSPCs in iron-overloaded mice is not significantly affected by iron. In contrast, when we transplanted bone marrow cells from normal mice (2×106 cells) into iron-overloaded recipients, hematopoietic recovery was significantly delayed, in particular platelet counts (at 2 weeks after BMT, normal recipients vs. iron-overloaded recipients, 63.4±9.4 vs. 18.7±4.7×104/μl, respectively, p 〈 0.001). This indicates that excess iron disturbs the function of the bone marrow microenvironment and delays hematopoietic reconstitution. Microarray and quantitative RT-PCR analysis of non-hematopoietic bone marrow cells (CD45-/Ter119-) from the iron-overloaded mice demonstrated significant reductions in CXCL12, VCAM-1, Kit-ligand and IGF-1, which are important regulators of hematopoiesis. In addition, in the iron-overloaded mice, the serum concentration of erythropoietin and the expression level of thrombopoietin in the liver were also significantly reduced. Furthermore, increased oxidative stress levels were observed in the iron-overloaded liver and bone marrow. Conclusion: We did not observe any direct effects of excessive iron on hematopoietic cells, but found significant impairment of the hematopoietic microenvironment in the bone marrow of iron-overloaded mice. These results suggest that oxidative stress induced by excess iron could disturb the hematopoiesis-supporting capacity of the bone marrow microenvironment by reducing the expression of many essential molecules. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood Advances, American Society of Hematology, Vol. 3, No. 21 ( 2019-11-12), p. 3266-3277
    Abstract: The cost of TKI for treatment of CML can be substantially saved by treatment discontinuation in patients who achieved DMR. Starting treatment with imatinib is the most cost-effective strategy even after incorporation of treatment discontinuation.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 98, No. 2 ( 2001-07-15), p. 422-427
    Abstract: Myelodysplastic syndrome (MDS) is a slowly progressing hematologic malignancy associated with a poor outcome. Despite the relatively high incidence of MDS in the elderly, differentiation of MDS from de novo acute myeloid leukemia (AML) still remains problematic. Identification of genes expressed in an MDS-specific manner would allow the molecular diagnosis of MDS. Toward this goal, AC133 surface marker–positive hematopoietic stem cell (HSC)-like fractions have been collected from a variety of leukemias in a large-scale and long-term genomics project, referred to as “Blast Bank,” and transcriptome of these purified blasts from the patients with MDS were then compared with those from AML through the use of oligonucleotide microarrays. A number of genes were shown to be expressed in a disease-specific manner either to MDS or AML. Among the former found was the gene encoding the protein Delta-like (Dlk) that is distantly related to the Delta-Notch family of signaling proteins. Because overexpression of Dlk may play a role in the pathogenesis of MDS, the disease specificity of Dlk expression was tested by a quantitative “real-time” polymerase chain reaction analysis. Examination of the Blast Bank samples from 22 patients with MDS, 31 with AML, and 8 with chronic myeloid leukemia confirmed the highly selective expression of the Dlk gene in the individuals with MDS. Dlk could be the first candidate molecule to differentiate MDS from AML. The proposal is made that microarray analysis with the Blast Bank samples is an efficient approach to extract transcriptome data of clinical relevance for a wide range of hematologic disorders.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2001
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 140, No. 6 ( 2022-08-11), p. 594-607
    Abstract: Triplet regimens, such as lenalidomide, bortezomib, and dexamethasone (RVd) or thalidomide, bortezomib, and dexamethasone (VTd), are standard induction therapies for transplant-eligible patients with newly diagnosed multiple myeloma (NDMM). The addition of daratumumab to RVd and VTd has been investigated in the GRIFFIN and CASSIOPEIA trials, respectively, resulting in improvement in the rate of minimal residual disease (MRD) negativity. In this study, we conducted a cost-effectiveness analysis with a 10-year time horizon to compare first-line and second-line use of daratumumab for transplant-eligible patients with NDMM. Because long-term follow-up data for these clinical trials are not yet available, we developed a Markov model that uses MRD status to predict progression-free survival. Daratumumab was used either in the first-line setting in combination with RVd or VTd or in the second-line setting with carfilzomib plus dexamethasone (Kd). Quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios were calculated from a Japanese and US payer perspective. In the Japanese analysis, D-RVd showed higher QALYs (5.43 vs 5.18) and lower costs (¥64 479,793 vs ¥71  287 569) compared with RVd, and D-VTd showed higher QALYs (5.67 vs 5.42) and lower costs (¥43  600 310 vs ¥49 471,941) compared with VTd. Similarly, the US analysis demonstrated dominance of a strategy incorporating daratumumab in first-line treatment regimens. Given that overall costs are reduced and outcomes are improved when daratumumab is used as part of a first-line regimen, the economic analysis indicates that addition of daratumumab to first-line RVd and VTd regimens is a dominant strategy compared with reserving its use for the second-line setting.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 3643-3643
    Abstract: Abstract 3643 Poster Board III-579 〈 Background and purpose 〉 c-Cbl is a ubiquitin E3 ligase and functions as a negative regulator for signals induced by various activated tyrosine kinases, by promoting ubiquitination and proteasomal degradation of these kinases. This inhibitory action is mainly mediated by the tyrosine kinase binding (TKB) and RING finger domains located in the NH3-terminal part of the molecule and these domains are evolutionally well-conserved from nematodes. But mammalian c-Cbl has a stretched structure toward the COOH-terminal end with putative tyrosine residues that can interact with p85 subunit of PI3-kinase, and several reports have denoted that this interaction may be important for cytoskeletal regulation. Recently, mutations of the c-cbl gene have been reported in hematopoietic malignancies, and regulation of hematopoietic stem/progenitor cells (HSPCs) by Cbl is attracting attention. Since it is well-known that cytoskeletal dysregulation is often associated with malignant transformation, in this study, we investigated cytoskeletal regulatory mechanisms mediated by Cbl in hematopoietic cells, using Cbl deficient mice. 〈 Methods and results 〉 To examine the migratory capacity of the HSPCs, lineage negative (Lin(-)) bone marrow cells were set in the Boyden Chamber assay for SDF-1 and fibronectin (FN) were performed. We found that Cbl deficient Lin(-) cells showed significantly decreased migration to these chemoattractants; the migration capacity of the Cbl deficient cells was one eighth for SDF-1 (p = 0.01) and one third for FN (p = 0.007), respectively, compared with the wild-type counterparts. Then, to evaluate in vivo homing ability to the bone marrow microenvironment, transplantation assays were performed. We transplanted 2.5 × 10e6 of Lin(-) HSPCs from Cbl deficient or wild-type Ly5.2 mice into sublethally irradiated wild-type Ly5.1 mice. Three hours after transplantation, chimerism of the transplanted Ly5.2 cells in the bone marrow was examined, and we found that the number of transplanted cells was significantly smaller in Cbl deficient cells, showing that homing capacity of HSPCs in Cbl deficient mice was impaired. Moreover, when we administered G-CSF to Cbl deficient mice, a significantly larger number of Lin(-) Sca1(+) c-Kit(+) cells were mobilized from the bone marrow (p = 0.01), indicating that in Cbl deficient mice, mobilization of HSPCs by G-CSF was also affected. In bone marrow cells or Lin(-) HPSCs of Cbl deficient mice, activity of Rac, a member of small G-protein GTPases, was significantly decreased (p = 0.002). These data ware supported by the experiments with embryonic fibroblast; Rac activities induced by FN stimulation were weaker in Cbl deficient fibroblasts than wild-type ones, and Cbl deficient fibroblasts showed impaired actin rearrangement. 〈 Discussion 〉 We found that Cbl deficient HSPCs showed impaired migration activities to chemoattractants and altered homing and mobilization to and from the bone marrow. Furthermore, Cbl deficient cells had impaired activation of Rac. Currently, little is known about the relationship between Cbl-mediated signals and cytoskeletal regulator Rac, and in this study, we found that Cbl is a positive regulator of Rac activity in the bone marrow hematopoietic cells. Rac activity is reported to be necessary for homing and retention of HSPCs in the bone marrow microenvironment, and our results indicate that interaction of HSPCs with the bone marrow microenvironment, e.g. trafficking of these cells, is regulated by Cbl via Rac GTPase signals. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1634-1634
    Abstract: Multiple myeloma (MM) is incurable, mainly because of cell adhesion-mediated drug resistance (CAM-DR). In this study, we performed functional screening using shRNA to define the molecule(s) responsible for CAM-DR of MM. Using 4 bona fide myeloma cell lines (KHM-1B, KMS12-BM, RPMI8226, and U266) and primary myeloma cells, we identified CD29 (b1-integrin), CD44, CD49d (a4-integrin, a subunit of VLA-4), CD54 (ICAM-1), CD138 (syndecan-1) and CD184 (CXCR4) as major adhesion molecules expressed on MM. Short hairpin RNA-mediated knockdown of CD49d but not CD44, CD54, CD138, and CD184 significantly reversed CAM-DR of myeloma cells to bortezomib, vincristine, doxorubicin, and dexamethasone. Experiments using blocking antibodies yielded almost identical results. Bortezomib was relatively resistant to CAM-DR because of its ability to specifically down-regulate CD49d expression. This property was unique to bortezomib and was not observed in other anti-myeloma drugs. Pretreatment with bortezomib was able to ameliorate CAM-DR of myeloma cells to vincristine and dexamethasone. These results suggest that VLA-4 plays a critical role in CAM-DR of MM cells. The combination of bortezomib with conventional anti-myeloma drugs may be effective in overcoming CAM-DR of MM.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...