GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 315-315
    Abstract: C/EBP transcription factors are crucial for the regulation of granulopoiesis in vitro and in vivo. C/EBPa is considered to be the master regulator of “steady state” granulopoiesis via upregulation of several myeloid genes (e.g. ELA2, CSFR3, etc.). The absence of C/ EBPa results in a complete loss of neutrophils. We were able to show that in patients with severe congenital neutropenia (CN) harbouring HAX-1 or ELA2 mutations C/EBPa is severely abrogated secondary to defective expression of LEF-1 (Skokowa J, et al. Nat Med.12, 1191–7 (2006)). Therefore, we were interested, whether other transcription factors are capable of substituting C/EBPa, since these patients respond to G-CSF with slight increase in neutrophils from less than 200/ul to above 1500/ul depending on the dose of G-CSF. C/EBPβ has recently been shown to be required for cytokine induced “emergency” granulopoiesis (Hirai H, et al. Nat Immunol.7, 732-9 (2006)). Therefore, we investigated the expression pattern of C/EBPβ during G-CSF treatment of CN patients. Indeed, C/EBPβ mRNA was upregulated 2.8-fold in CD33+ myeloid cells from CN patients by G-CSF treatment, as compared to healthy individuals. It was associated with upregulation of G-CSFR mRNA and –protein expression as well as ligand binding to G-CSFR in myeloid cells, and elevated levels of biologically active G-CSF in serum from CN patients. To confirm C/EBPβ-dependent activation of G-CSFR and G-CSF gene expression, we performed reporter gene assays in CD34+ bone marrow hematopoietic progenitor cells from two CN patients co-transfected with C/EBPβ and reporter constructs containing upstream regulatory regions of G-CSF or G-CSFR genes, −1470bp and −670bp, respectively. Indeed, C/EBPβ activated G-CSFR promoter 3.2-fold and G-CSF promoter 5.4-fold. These data demonstrate that in CN patients, G-CSF induces C/EBPa independent granulopoiesis and that C/EBPβ is required for the response to G-CSF treatment in these patients. C/EBPβ leads in response to G-CSF to induction of differentiation of neutrophil precursors to mature neutrophils in vivo. Our hypothesis is that in CN the steady state granulopoiesis is abrogated whereas the emergency granulopoiesis still leads to sufficient numbers of neutrophils.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 3589-3589
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 3589-3589
    Abstract: Abstract 3589 Poster Board III-526 Recently we found that NAMPT, a protein involved in biosynthesis of NAD+ was significantly increased in Severe Congenital Neutropenia (CN) patients treated with G-CSF as compared to healthy individuals (Skokowa et al, Nature Medicine, 2009). Increased NAD+ levels correlated with the elevated levels of SIRT1, a NAD+-dependent deacetylase involved in the deacetylation of histone and non-histone proteins. CN is considered as a pre-leukemic syndrome, since ca. 20% of CN patients develop AML/MDS. SIRT1 mediated deacetylation of p53 at the lysine 382 has been shown to attenuate the transcriptional activity of p53. We asked if inactivation of p53 by NAMPT/ NAD+ / SIRT1 dependent deacetylation plays a role in the leukemic transformation in patients suffering from CN. Here we can demonstrate that presence of NAMPT or NAD+ enhances the SIRT1 mediated deacetylation of acetylated lysine peptide in vitro. Further in 293T cells overexpression of NAMPT induces the SIRT1 mediated deacetylation of p53. Using the promyelocytic cell line NB4 we show that endogenous p53 interacts with SIRT1 and the presence of NAMPT leads to decreased acetylation of p53 at the lysine 382. The compound FK866 which specifically inhibits NAMPT has recently entered clinical trials as a potential chemotherapeutic agent. Acetylation of p53 is considered to be important for its tumor suppressor function and we asked if inhibition of NAMPT using FK866 increases the acetylation of p53. Indeed we demonstrate that the acetylation level of p53 is enhanced when NB4 cells were treated with FK866 and increased acetylation of p53 correlates with the decreased interaction between p53 and SIRT1. Treatment of NB4 with NAMPT further leads to the decreased expression of p53 target gene cyclin-dependent kinase inhibitor 1A (p21, Cip1) protein. p21 is a well known target of p53 and is involved in cell cycle arrest after the cell undergoes stress. Using p21 promoter-luciferase construct we show that SIRT1 inhibits the p53 mediated activation of p21 promoter and this inhibition was further enhanced in the presence of NAMPT or NAD+. Taken together our working hypothesis is that NAMPT/NAD+ activated SIRT1 mediates deacetylation of p53 protein thereby leading to p53 inactivation and downregulation of downstream target genes with tumor suppression functions (e.g. p21) which might possibly resulting in the leukemic transformation in CN patients. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2011
    In:  Blood Vol. 118, No. 21 ( 2011-11-18), p. 2461-2461
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2461-2461
    Abstract: Abstract 2461 Introduction: Impaired acetylation level of histone and non-histone proteins, due to increased histone deacetylase (HDAC) activity relates to pathological malignancies including leukemias. The tumor suppressor protein p53 is an important non-histone target of HDACs and regulates key cellular processes such as DNA repair, cell-cycle arrest, senescence and apoptosis. The p53 protein undergoes several post-translational modification and among them acetylation allows p53 to induce the expression of genes relevant to tumor suppression. In certain cases of leukemias, overexpression of HDACs has been associated with inactivation of p53 via deacetylation. Therefore, increasing the acetylation of p53 by inhibition of HDACs can be an effective approach to trigger the function of p53 in cancer cells. The anticonvulsant valproic acid (VPA) has been shown to be an efficient HDAC inhibitor (HDACI), able to induce apoptosis in acute myeloid leukemia (AML) cells, and has recently entered clinical trials as a potential therapeutic agent. Although VPA exerts strong anti-tumor activity against haematological malignancies, the molecular mechanism of events involved in VPA-mediated death of leukemia cells is largely unclear. Methods/results: To identify the potential downstream targets triggered by VPA in leukemia cells, the acetylation profile in total cell lysate was compared between VPA treated and untreated NB4 leukemia cell line. We observed increased acetylation of several proteins ranging from 20 KDa to 150 KDa after VPA treatment. Among them acetylation of p53 at lysine residue 382, critical for p53 function, was detected. This result motivated us to further elucidate the functional significance of p53 acetylation in leukemia cells. VPA mediated p53 acetylation resulted in more than two fold induction of several p53 target genes, such as p21, BAX, GADD45A. By knockdown of p53 using specific shRNA against mRNA of p53 we show that VPA mediated expression of p21 was independent of p53, in contrast VPA mediated expression of BAX required presence of p53. Activation of p53 by VPA involved increased expression of genes involved in cell-cycle arrest and apoptosis. Therefore we performed cell cycle analysis using BrdU and evaluated apoptosis by Annexin V staining after challenging the leukemia cells with VPA (0.5 mM, 1mM and 2mM). We observed a dose dependent decrease of cells entering S-phase and this was accompanied by increase of cells undergoing cell cycle arrest and apoptosis. VPA induced apoptosis and cell cycle arrest was significantly attenuated in p53 knock down cells, indicating p53 as an active player in VPA mediated killing of leukemic cells. To further address the clinical relevance of VPA mediated p53 signalling, we performed experiments with primary blasts isolated from AML patients (n = 10). Treatment with 1mM VPA imposed cytotoxic effect on all leukemia cells tested with varying intensities (6 high responsive and 4 low responsive). Acetylation of p53 was dramatically increased in the six patient samples which were highly sensitive to VPA in contrast to 4 patient samples which were less responsive. Furthermore increased acetylation of p53 in these blast samples was subsequently associated with increased mRNA expression of both p21 and BAX. Conclusion: In summary we demonstrate that p53 is an important player downstream of VPA signaling and suggest that induction of p53 acetylation by VPA plays a decisive role in imposing cytotoxic effect on AML cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 1352-1352
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1352-1352
    Abstract: Abstract 1352 Poster Board I-374 Severe congenital neutropenia (CN) is a heterogeneous disorder of hematopoiesis characterized by a maturation arrest of granulopoiesis at the level of promyelocytes with peripheral blood absolute neutrophil counts below 0.5 × 10/l. G-CSF treatment increases blood neutrophil numbers in more than 90% of individuals with CN. CN is also considered as a pre-leukemic syndrome, since ca. 20% of CN patients develop AML/MDS. Recently we found that NAMPT, a protein involved in biosynthesis of NAD+ was significantly increased in CN patients treated with G-CSF as compared to healthy individuals (Skokowa et al, Nature Medicine, 2009). Increased NAD+ levels correlated with the elevated levels of SIRT1, an enzyme involved in deacetylation of several histone and non -histone proteins (e.g. FOXO3a) by utilising NAD+. In search of the downstream factors regulated by G-CSF/ NAMPT /SIRT1 pathway, we found elevated levels of FOXO3a protein in CN patients treated with G-CSF compared to healthy controls or patients with other types of neutropenia. Therefore, we were interested whether NAMPT/ NAD+ -dependent activated SIRT1 affects FOXO3a levels. Indeed we observed that overexpression of NAMPT leads to the upregulation of FOXO3a protein in 293T cells and endogenous FOXO3a interacts with endogenous SIRT1 in both 293T cells and promyelocytic cell line NB4. The compound FK866 which specifically inhibits NAMPT has recently entered clinical trials as a potential chemotherapeutic agent. As acetylation of FOXO3a is considered to be important for its tumor suppressor function we asked if inhibition of NAMPT using FK866 increases the acetylation of FOXO3a. Indeed we show that acetylation level of FOXO3a is enhanced when 293T and NB4 cells were treated with FK866. Furthermore, increased acetylation of FOXO3a correlates with the decreased interaction between FOXO3a and SIRT1 in 293T cells after treatment with FK866. GADD45, a protein involved in DNA damage repair, is a well known target of FOXO3a. We found that in CD33+ myeloid progenitor cells from G-CSF treated CN patients with high NAMPT / SIRT1 / FOXO3a levels also had low GADD45 mRNA levels. We performed reporter gene assay using luciferase construct containing wild type GADD45 promoter and observed that SIRT1 enhances the FOXO3a mediated downregulation of GADD45 promoter and interestingly NAD+ further augments this effect. Taken together we hypothesized that NAMPT/NAD+ activated SIRT1 mediates deacetylation and activation of FOXO3a protein, leading to downregulation of target genes (e.g. GADD45) with tumor suppression functions which might possibly be involved in the leukemic transformation in CN patients. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1711-1711
    Abstract: Introduction: AML is the second most of pediatric leukemia with relapse in 〉 30% of the patients.Clonal evolution of rare primary leukemic cells that survived the initial therapy or gained additional mutations independent of therapy stress, could be the potential cause of relapse in pediatric AML.Therefore, sensitive and reliable methods to measure accurately the mutational shifts between diagnoses, during therapy and relapse could provide useful information on the disease progression.Exosomes are extracellular vesicles of 30-150nm in diameter that are released by both healthy and malignant cells. Exosomes derived from tumor cells or leukemia blasts have emerged as potential valuable biomarkers as they have been illustrated to feature disease specific protein, lipid and nucleic acid signatures that represent the pathological state of the respective cells. While leukemia cells release relatively higher amounts of exosomes compared to healthy cells, mutational profiling of exosomes could be more sensitive than analyzing rare leukemia sub-clone in thehematopoietic compartment. Methods: Secreted exosomes from conditioned media of K-562leukemia celllines and plasma of pediatric AML patients were isolated using differential ultracentrifugation at 100000g. Absolute DNA amount was quantified usingQuantiFluordsDNA System fromPromega. DNA deep sequencing was performed to analyze theexosomal DNA from K-562 cell line. The mutational profiling of the DNA from primary material, plasma and exosomes was performed using next generation sequencing platform, Illumina. Results: To establish the diagnostic and prognostic potential of exosomes in measuring leukemia associated mutations we isolated exosomes from the conditioned media of the cultured leukemia cell lineK-562. We used this cell line as model because it harbors the classical BCR-ABL translocation that is relevant in deciding treatment options in chronic myeloid leukemia. Analysis of DNA isolated from these exosomes revealed the presence of genomic double-stranded DNA (dsDNA) fragments. Using deep sequencing approach we could further detect the classical BCR-ABL translocation in exosomes. The presence of leukemia specific mutation in exosomes that is potentially derived from parental cells suggests the utility for exosomes in leukemia diagnosis and to forecast treatment response and relapse. In the next step, we analyzedexosomal dsDNA from plasma exosomes of primary pediatric AML patients. We compared the sensitivity of DNA associated from exosomes isolated from blood plasma of pediatric AML patients and compared it to free floating cell free DNA (cfDNA) in the plasma supernatant. In our study we used the plasma volume ranging from 350 microliters to 1ml from peripheral blood of AML patients at diagnosis and relapse (n=9). We performed DNA isolation from the starting plasma material and then compared it with the exosomes isolated. As control, DNA from the exosomes depleted fraction was also analyzed. Comparison of these three fractions (input plasma, pelleted exosomes and exosome depleted plasma) revealed a significant enrichment of dsDNA in the exosome fraction after ultracentrifugation in 7 out of 9 patients (Figure A). This suggests that isolation of exosomes from supernatant can enrich the amount of DNA and thereby the sensitivity of downstream mutational analysis in diagnostic. By next generation sequencing (NGS) (myeloid panel, Illumina) using the DNA materials from plasma supernatants and the respective exosomes we screened for AML associated mutations (n=7). We were able to detect the known primary mutation detected at diagnosis or relapse in both plasma and exosomes of 6 out of 7 patient material. In one patient the detection of mutations were not possible in both the plasma andexosomal fraction. Interestingly we could detect additional mutations like FLT-ITD (patient 2) or CUX1 (patient 4) only in the exosome fraction (Table B). Conclusion: These results suggest that the combined evaluation of DNA from plasma and exosome fraction could provide novel and additional information about the clonal hierarchy or evolution of AML, and if used for monitoring, might be of prognostic relevance. Disclosures Reinhardt: Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Other: Travel Accomodation; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3646-3646
    Abstract: Abstract 3646 Children with Down syndrome (DS) are at high risk to develop acute megakaryoblastic leukemia (DS-AMKL) and the antecedent transient leukemia (DS-TL). Acquired mutations in the hematopoietic transcription factor GATA1, leading to expression of a shorter GATA1 variant (referred to as GATA1s) truncated at its N-terminus, are consistently present in the affected cells of children with DS-AMKL and DS-TL. Mechanistically, we recently found that in fetal megakaryocytic progenitor cells, GATA1 coordinates proliferation and differentiation by repressing E2F target genes through a direct interaction with E2F activators. Failure of this GATA1-E2F interaction in mutated GATA1s likely converges with overactive IGF signaling to promote cellular transformation. The treatment of DS-AMKL is hampered by their sensitivity against current cytostatic agents, resulting in treatment-related mortality as the main cause of death. To develop novel targeted and less toxic treatment options for DS-AMKL and DS-TL, we conducted a gene expression-based chemical genomic screen. We connected a DS-AMKL gene expression signature (compared to non-DS-AMKL, i.e. GATA1s vs. GATA1) to a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules (Connectivity Map). We discovered the histone deacetylase (HDAC) inhibitor valproic acid (VPA) reverses the DS-AMKL gene expression program. Cell viability assays, cell cycle analyses, growths curves and colony-forming assays revealed exceptional sensitivity of DS-AMKL cell lines (CMK, CMY; IC50 1mM) and primary DS-AMKL and DS-TL blasts to VPA treatment compared to control cell lines K562 (IC50 4.75mM), M07 (IC50 6.75mM) and CD34+ hematopoietic stem and progenitor cells (IC50 4.75mM). VPA induces apoptosis (26.8% 7-AAD-)Annexin V+ and 38.8% 7-AAD+ CMK cells after 48h at 2mM VPA) and cell cycle arrest (50% reduction of CMK cells in S-phase at 2mM) via activation of the cell cycle inhibitor p21 and the proapoptotic genes BAX and BAK. Gene expression profiles indicated that VPA interferes with the oncogenic effects of GATA1s by globally repressing the deregulated E2F targets. The effects of VPA on leukemic growth in DS-AMKL could be attributed to its HDAC inhibitory function, as the global HDAC inhibitors SAHA and TSA induced a similar response. Thus, by using a gene expression-based chemical genomic approach, we identified VPA as an efficient and well-tolerated treatment option for DS-AMKL and DS-TL by targeting GATA1s-mediated deregulation of the E2F transcription network. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3614-3614
    Abstract: Abstract 3614 Despite well-described anti-cancer effects and promising results in clinical trials, little is known regarding the selectivity of histone deacetylase (HDAC) inhibitors in killing malignant and sparing normal cells. Using Down syndrome associated myeloid leukemia (DS-AMKL) as a model for an exceptionally sensitive form of acute myeloid leukemia (AML), we elucidated a role of HDAC inhibitors in blocking autophagy, which exploits a specific vulnerability of several types of cancer. We could show that HDAC1/2 inhibition efficiently inversed the DS-AMKL gene signature, resulting in p53-independent cell cycle arrest (BrdU incorporation and CFSE assay) and apoptosis (Annexin V/ 7-AAD and Nicoletti staining, caspase 3/7 activity assay) of DS-AMKL cell lines (CMK and CMY) and primary DS-AMKL leukemic blast. In contrast, control cell lines K562 and M07 were resistant to VPA-induced apoptosis. DS-AMKL is characterized by the high activation of the insulin-like growth factor (IGF) signaling cascade, which in turn results in the constitutive activation of mammalian target of rapamycin (mTOR). mTOR has been characterized as a major suppressor of autophagy, a lysosomal degradation process that takes place constitutively at a basal level and protects cells against damaged or unnecessary organelles and protein aggregates. Measuring endogenous LC3-I to LC3-II conversion levels by Western blot, a posttranslational modification during autophagy, we confirmed a lower basal autophagic activity in DS-AMKL cells compared to the control cell lines, K562 and M07 (LC3B-II/actin [RU]: 1.5 CMK, 1.0 CMY, 6.0 K562 and 3.0 M07). Studying the effect of HDAC inhibition on autophagy, we detected an initial, dose-dependent increase in LC3-II band formation, punctae formation and decrease in total LC3-GFP cellular abundance (i.e., autophagy activation) 12h after VPA treatment in all cell lines (CMK, CMY, K562 and M07), indicative for induction of autophagy. However, prolonged exposure to VPA for up to 24h led to a block of autophagic flux, as shown by a gradual accumulation of LC3-GFP (fold increase in LC3-GFP MFI compared to untreated control: 1.3 CMK**, 1.1 CMY*, 2.0 K562** and 2.0 M07** at 2mM VPA; **p 〈 0.01; *p 〈 0.05). Autophagy participates in the removal of damaged mitochondria, which prevents the initiation of intrinsic apoptotic pathway or DNA damage by increased ROS generation. Our results demonstrated a dose-dependent relationship between VPA-associated accumulation of mitochondrial mass and the intrinsic autophagic activity of the respective leukemic cell lines (fold increase in MitoTracker green MFI: 4.7 CMK**, 4.8 CMY**, 1.3 K562 and 1.2 M07 at 10mM VPA; **p 〈 0.01). Likewise, the VPA-mediated mitochondrial mass accumulation correlated with ROS formation (fold increase in CM-H2DCFDA MFI: 3.3 CMK**, 2.7 CMY**, 1.5 K562** and 1.2 M07** at 10mM VPA; **p 〈 0.01) and reflects the sensitivity to VPA induced apoptosis. In addition, we detected DNA-double strand breaks as indicated by an increase of phosphorylated H2AX. The effects of HDAC inhibitors on DS-AMKL cells could be recapitulated by pharmacologic (autophagosome-lysosome fusion using vinblastine and nocodazole; autophagolysosomal degradation using ammonium chloride, chloroquine and hydroxychloroquine) and genetic (shRNA-mediated knockdown of ATG5 or ATG7) inhibition of autophagy, underlining dependency on their low basal level of autophagy. Inversely, induction of autophagy by starvation reversed the effects of HDAC inhibition on cell lines and primary DS-AMKL cells (i.e. induction of apoptosis, accumulation of mitochondria and ROS-production). Thus, our study identified the role of HDAC inhibitors in blocking autophagy, exploiting the specific vulnerability of DS-AMKL cells with suppressed basic autophagy due to high mTOR activation. This was unexpected as previous studies proposed HDAC inhibitors as autophagy activators. VPA treatment of DS-AMKL cell lines and primary cells repressed autophagy below a critical threshold leading to accumulation of mitochondria, production of ROS, DNA-damage and apoptosis, which could be reverted upon autophagy activation. Our findings suggest repression of autophagy by HDAC inhibition as a novel treatment strategy in leukemic cells with highly active mTOR pathway. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 114, No. 14 ( 2009-10-01), p. 3044-3051
    Abstract: Severe congenital neutropenia (CN) is a heterogeneous disorder of myelopoiesis which follows an autosomal dominant or autosomal recessive pattern of inheritance. Genetic analyses indicate mutations in the ELA2 gene in most patients. We have identified LEF-1 as a decisive transcription factor in granulopoiesis controlling proliferation and granulocytic differentiation by direct activation of its target gene, C/EBPα. In patients with CN, the expression of LEF-1 and C/EBPα was abrogated in myeloid progenitors leading to maturation arrest of granulopoiesis. In the present study we demonstrated that ELA2 mRNA expression in myeloid progenitors and plasma protein levels of neutrophil elastase (NE) were markedly reduced in patients with CN harboring mutations in either ELA2 or HAX-1 genes. The ELA2 gene promoter is positively regulated by the direct binding of LEF-1 or C/EBPα, documenting the role of LEF1 in the diminished ELA2 expression. We found that transduction of hematopoietic cells with LEF-1 cDNA resulted in the up-regulation of ELA2/NE synthesis, whereas inhibition of LEF-1 by shRNA led to a marked reduction in the levels of ELA2/NE. LEF-1 rescue of CD34+ cells isolated from 2 patients with CN resulted in granulocytic differentiation of the cells which was in line with increased levels of functionally active ELA2/NE.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society of Hematology ; 2010
    In:  Blood Vol. 116, No. 21 ( 2010-11-19), p. 1480-1480
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 1480-1480
    Abstract: Abstract 1480 Severe congenital neutropenia (CN) is a heterogeneous disorder of hematopoiesis characterized by a maturation arrest of granulopoiesis at the level of promyelocytes with peripheral blood absolute neutrophil counts below 0.5 × 109/L. G-CSF treatment increases blood neutrophil counts in more than 90% of individuals with CN. CN is also considered as a pre-leukemic syndrome, since ca. 20% of CN patients develop Acute Myelocytic Leukemia (AML) or Myelodysplastic Syndrome (MDS). Surprisingly no mutations in genes, which typically occur in primary AML/MDS patients, were detected in CN patients who developed leukemia. But studies in CN patients reveal a high association of G-CSF receptor mutation and the incidence of leukemia, indicating the dysregulation of certain factors downstream of G-CSF receptor signalling. Recently, we reported that Nicotinamide Phosphoribosyltransferase (NAMPT), a protein involved in biosynthesis of NAD+, was significantly increased in CN patients treated with G-CSF as compared to healthy individuals. Elevated NAMPT/NAD+ levels correlated with increased levels of SIRT1, a NAD+-dependent deacetylase which is involved in the deacetylation of histone and non-histone proteins e.g. p53. The acetylation of tumor-suppressor p53 is considered necessary for its transcriptional activation, while SIRT1-mediated deacetylation of p53 has been shown to attenuate the transcriptional activity of p53. Therefore, we asked if deacetylation-dependent inactivation of p53 might play a role in leukemic transformation in CN patients. In this study we demonstrate that the presence of NAMPT or NAD+ enhances the SIRT1-mediated deacetylation of p53 in both the 293T cell line and the promyelocytic leukemia NB4 cell line. Treatment with exogenous recombinant NAMPT also leads to a decrease in the acetylation levels of endogenous p53 in CD34+ cells. The cyclin-dependent kinase inhibitor 1A (p21, Cip1) protein is a well-known target of p53 and is involved in cell cycle arrest. We have shown that over-expression of NAMPT leads to down-regulation of p21 mRNA, and specific knockdown of SIRT1 leads to up-regulation of p21 mRNA. The presence of NAMPT also decreases the mRNA levels of p21 in both NB4 and CD34+ cells. The compound FK866 specifically inhibits NAMPT and has recently entered clinical trials as a potential chemotherapeutic agent. In a recent preclinical in vitro study FK866 has been shown to elicit massive cell death in numerous leukemia/lymphoma cell lines, but the underlying molecular mechanism remains unknown. We tested if inhibition of NAMPT using FK866 enhances the tumor-supressing role of p53 by increasing its acetylation levels. We have demonstrated that the treatment of NB4 cells with FK866 increases the acetylation of endogenous p53, and this increased acetylation is in part due to decreased interaction of p53 with SIRT1. In addition, the mRNA levels of p21 down-regulated in CD34+ and NB4 cells on treatment with NAMPT were up-regulated on use of FK866. Knockdown of p53 using specific shRNA against p53 inhibits the expression of p21 and treatment with FK866 under p53 knockdown does not induce the expression of p21 when compared to control cells. In functional studies we show that over-expression of NAMPT leads to increased proliferation of both 293T and NB4 cells. Treatment with FK866 leads to increased death of NB4 cells compared to the cells in which p53 has been silenced, due to the lack of p53 available to be acetylated. Taken together, our conclusion is that NAMPT/NAD+ activated SIRT1 mediates deacetylation of p53 leading to down-regulation of the downstream target gene p21. This inhibition of the tumor-suppressor functions of p53 might be involved in the leukemic transformation seen in CN. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...