GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 228-228
    Abstract: Acute precursor T-lymphoblastic leukemia (T-ALL) remains a serious challenge in pediatric oncology, because relapses carry a particularly poor prognosis with high rates of induction failure and death despite generally excellent treatment responses of the initial disease. It is critical, therefore, to understand the molecular evolution of pediatric T-ALL and to elucidate the mechanisms leading to T-ALL relapse and to understand the differences in treatment response between the two phases of the disease. We have thus subjected DNA from bone marrow samples obtained at the time of initial diagnosis, remission and relapse of 14 patients to whole exome sequencing (WES). Eleven patients suffered from early relapse (duration of remission 6-19 months) and 3 patients from late relapse (duration of remission 29-46 months).The Agilent SureSelect Target Enrichment Kit was used to capture human exons for deep sequencing. The captured fragments were sequenced as 100 bp paired reads using an Illumina HiSeq2000 sequencing instrument. All sequenced DNA reads were preprocessed using Trimmomatic (Lohse et al., Nucl. Acids Res., 2012) to clip adapter contaminations and to trim reads for low quality bases. The remaining reads greater than 36bp were mapped to build hg19 of the human reference genome with Stampy (Lunter & Goodson, Genome Res. 2011), using default parameters. Following such preprocessing, the number of mapped reads was 〉 95% for all samples. Single-nucleotide variants (SNVs) were called using SAMtools mpileup (Li et al., Bioinformatics, 2009). The number of exonic SNVs varied between 23,741 and 31,418 per sample. To facilitate a fast classification and identification of candidate driver mutations, all identified coding SNVs were comprehensively annotated using the ANNOVAR framework (Wang et al., Nat. Rev. Genet., 2010). To identify possible somatic driver mutations, candidate SNVs were filtered for non-synonymous, stopgain or stoploss SNVs, requiring an SNV quality greater or equal to 50, and requiring absence of segmental duplications. Leukemia-specific mutations were identified by filtering against the corresponding remission sample and validated by Sanger sequencing of the genomic DNA following PCR amplification. We identified on average 9.3 somatic single nucleotide variants (SNV) and 0.6 insertions and deletions (indels) per patient sample at the time of initial diagnosis and 21.7 SNVs and 0.3 indels in relapse. On average, 6.3 SNVs were detected both at the time of initial diagnosis and in relapse. These SNVs were thus defined as leukemia specific. Further to SNVs, we have also estimated the frequency of copy number variations (CNV) at low resolution. Apart from the deletions resulting from T-cell receptor rearrangement, we identified on average for each patient 0.7 copy number gains and 2.2 copy number losses at the time of initial diagnosis and 0.5 copy number gains and 2.4 copy number losses in relapse. We detected 24/27 copy number alterations both in initial diagnosis and in relapse. The most common CNV detected was the CDKN2A/B deletion on chromosome 9p. Nine genes were recurrently mutated in 2 or more patients thus indicating the functional leukemogenic potential of these SNVs in T-ALL. These recurrent mutations included known oncogenes (Notch1), tumor suppressor genes (FBXW7, PHF6, WT1) and genes conferring drug resistance (NT5C2). In several patients one gene (such as Notch 1, PHF6, WT1) carried different mutations either at the time of initial diagnosis and or in relapse, indicating that the major leukemic clone had been eradicated by primary treatment, but that a minor clone had persisted and expanded during relapse. The types of mutations did not differ significantly between mutations that were either already present at diagnosis or those that were newly acquired in relapse, indicating that the treatment did not cause specific genomic damage. We will further characterize the clonal evolution of T-ALL into relapse by targeted re-sequencing at high depth of genes with either relapse specific or initial-disease specific mutations. In conclusion, T-ALL relapse differs from primary disease by a higher number of leukemogenic SNVs without gross genomic instability resulting in large CNVs. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 258-258
    Abstract: Abstract 258 Primary immunodeficiencies represent model diseases for the mechanistic understanding of the human innate and the adaptive immune response and are per se clinically highly relevant, because in SCID patients infections by opportunistic pathogens are typically life-threatening early in life. We identified an infant of consanguineous parents suffering from a novel form of SCID, who presented with a life-threatening Pneumocystis jirovecii pneumonia. This entity was characterized by agammaglobulinemia and profoundly deficient T-cell function despite quantitatively normal T- and B-lymphocytes. Lymphocyte proliferation was strongly inhibited after stimulation of PBMCs with T-cell mitogens such as PHA, Con A, or anti-CD3 monoclonal antibody. The expression of several T-cell response associated cytokines upon stimulation with PMA/ionomycin was dramatically reduced in comparison to normal controls. By contrast, proliferation induced by the classical B-cell mitogen PWM was almost comparable to healthy controls. Immunophenotyping revealed a predominantly naïve phenotype (CD45RA+ CCR7+) in CD4+ and CD8+ T-lymphocytes, whereas central memory T-lymphocytes (CD45RA− CCR7+) were nearly absent. B-lymphocytes from peripheral blood were mainly naïve B-cells (CD27−) with a uniformly immature transitional B-lymphocyte phenotype (CD24++, CD38++). Patient B-lymphocytes retained the ability to proliferate and differentiate in response to BCR-independent stimuli, while their response to BCR activation was defective. Our findings thus revealed a combined defect of TCR-mediated T-lymphocyte functions and BCR-mediated B-lymphocyte functions but did not enable us to link the immunological phenotype with one of the known molecularly defined categories of SCID. Diagnostic whole-exome sequencing and systematic variant categorization revealed a single pathogenic homozygous nonsense mutation of the caspase recruitment domain 11 (CARD11) gene. CARD11 is a scaffold protein that is known to be required for the assembly and activation of the NF-kB complex. In reconstitution assays we demonstrated that the patient derived truncated CARD11 protein is defective in antigen receptor signaling and NF-kB activation. Several lines of evidence substantiate the involvement of the identified CARD11 mutation in the new form of SCID that we report here. First, PCR and Sanger re-sequencing validated the truncating CARD11 mutation to be homozygous in the patient and heterozygous in the parents, in agreement with the recessive transmission of the mutation through the healthy consanguineous parents. Second, CARD11 is a scaffold protein required for TCR- and BCR-induced NF-kB activation as well as lymphocyte activation and proliferation, which is specifically expressed in hematopoietic cells, consistent with a causative role of CARD11 mutations in the context of an immune disorder. Third, the GUK domain of CARD11, which is missing in the mutated form of CARD11 due to truncation, was previously reported to be necessary for NF-kB activation by PMA/ionomycin treatment, further supporting the presumed damaging nature of the homozygous CARD11 mutation observed in the female patient reported here. Finally, the immunological findings in this patient are compatible with the phenotype of a previously described Card11 −/− k.o. mouse, which shows a selective defect in NF-κB activation leading to diminished antigen receptor or PKC mediated proliferation and defective cytokine production in T-cells and B-cells. Thus, we have identified an inactivating CARD11 mutation linking defective NF-kB signaling with a novel cause of autosomal recessive SCID, which must be considered in the diagnostic assessment of patients with suspected SCID but with quantitatively normal T-cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3479-3479
    Abstract: Chediak Higashi Syndrome (CHS) is caused by defective membrane targeting of components of the lysosome, which results from inactivation of the lysosomal trafficking regulator LYST. Clinically, CHS is typically characterized by partial albinism, susceptibility to infection, lymphoproliferation with acceleration to HLH. The immunodeficiency can be cured by allogeneic stem cell transplantation (HSCT), but transplanted patients can develop picture resembling spinocerebellar degeneration in early adult life. Depending on the type of mutation, CHS can vary from a most severe childhood form with null-mutations to milder adult onset forms with hypomorphic mutations. We report on a previously healthy boy, who presented at the age of 3 years with life threatening features of HLH but no clinical features of CHS. The patient was treated with HSCT from an unrelated HLA-identical stem cell donor 4 years ago and is developing normally since. Analysis of HLH candidate genes did not result in the identification of the genetic cause at that time. At the time of the next pregnancy whole exome sequencing of DNA that had been obtained before HSCT was performed to enable specific genetic counseling. The Agilent SureSelect Target Enrichment Kit was used and the captured fragments were sequenced as 100 bp paired reads using an Illumina HiSeq2000 sequencing instrument. All sequenced DNA reads were preprocessed using Trimmomatic (Lohse et al. 2012) to clip adapter contaminations and to trim reads for low quality bases. The remaining reads greater than 36bp were mapped to build hg19 of the human reference genome with Stampy (Lunter & Goodson, 2011), using default parameters. Following such preprocessing, the number of mapped reads was 〉 95% for all samples. Single-nucleotide variants (SNVs) were called using SAMtools mpileup (Li et al. 2009). The number of exonic SNVs varied between 23,741 and 31,418 per sample. To facilitate a fast classification and identification of candidate driver mutations, all identified coding SNVs were comprehensively annotated using the ANNOVAR framework (Wang et al., Nat. Rev. Genet., 2010). To identify possible pathogenic mutations, candidate SNVs were filtered for nonsynonymous, stopgain or stoploss SNVs, requiring an SNV quality greater or equal to 100, and requiring absence of segmental duplications. Only SNVs that were not contained in dbSNP were considered for further analysis. No homozygous and 122 heterozygous SNVs meeting those requirements were identified. Only one gene, LYST, was affected by two different SNVs and was selected for further analysis because of its known relationship to HLH. Sanger sequencing confirmed the compound heterozygous genotype for the two novel LYST missense mutations Q3057K and R3785H in the patient and the heterozygous genotype for one of these mutations in the parents. We then specifically searched for typical features of CHS in the pre-HSCT diagnostic material. The typical large lysosomal granules in blood cells could not be identified. By contrast, light microscopy of the patient’s hair showed a silvery aspect and chunky dyspigmentation in the medulla. Little granular melanin was detected in the hair cortex. Electron microscopy revealed an uneven distribution of pigment and giant melanosomes in some keratinocytes, compatible with a partial albinism. We thus conclude that this patient suffers from an incomplete albeit immunologically most severe Chediak-Higashi syndrome, which led to an early accelerated phase resembling primary HLH. This report highlights the diagnostic power of whole exome sequencing, which enables an unbiased mutation analysis and the identification of unexpected causes of genetic diseases with atypical phenotypes. At the same time, this case also highlights some of the ethical challenges associated with diagnostic genomic analyses: While a specific and clinically validated diagnosis enabled specific genetic counseling, the family now has to face the unexpected uncertainty about the neurologic prognosis of incomplete Chediak-Higashi-syndrome, which may possibly progress into untreatable neurodegeneration during early adulthood despite successful allogeneic stem cell transplantation. Apart from adding to the knowledge of the genetic and phenotypic complexity of CHS, this patient also underlines the necessity of careful counseling before diagnostic genomic analyses are offered to patients and their families. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...