GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 4095-4095
    Abstract: TET2 mutations are early somatic events in the pathogenesis of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPN) and are one of the most common genetic lesions found in these diseases. In MPN, TET2 mutations are enriched within more advanced disease phenotypes such as myelofibrosis and leukemic transformation and often co-occur with the JAK2V617F mutation, which is present in the majority of MPN patients. We have developed and characterized a Jak2V617F conditional knockin mouse (Jak2VF/+), the phenotype of which closely recapitulates the features of human MPN. To determine the impact of Tet2 loss on Jak2V617F-mediated MPN, we crossed Tet2 conditional knockout mice with Jak2VF/+ knockin and Vav-Cre transgenic mice and backcrossed the compound mutant animals. We then characterized the effects of heterozygous and homozygous loss of Tet2 on the phenotype of Jak2VF/+ mice. We assessed peripheral blood counts, histopathology, hematopoietic differentiation using flow cytometry, colony formation and re-plating capacity. We also evaluated the effects of Tet2 loss on the transcriptome of the HSC compartment using gene expression microarrays and on HSC function using competitive bone marrow transplantation assays. Similar to Jak2VF/+/VavCre+ mice, Tet2+/-/Jak2VF/+/VavCre+ and Tet2-/-/Jak2VF/+/VavCre+ mice develop leukocytosis, elevated hematocrits (HCT) and thrombocytosis. Tet2-/-/Jak2VF/+/VavCre+ mice demonstrate enhanced leukocytosis and splenomegaly compared to the other groups. All groups demonstrate myeloid expansion, erythroid hyperplasia and megakaryocytic abnormalities consistent with MPN in the bone marrow and spleen, while more prominent myeloid expansion and megakaryocytic morphological abnormalities are observed in Tet2-/-/Jak2VF/+/VavCre+ mice as compared to the other groups. Notably, we do not see the development of acute myelogenous leukemia (AML) in Tet2-/-/Jak2VF/+/VavCre+ mice at 6 months. We see enhanced expansion of lineagelowSca1+cKithigh (LSK) cells (enriched for HSC) most prominently in the spleens of Tet2+/-/Jak2VF/+/VavCre+ and Tet2-/-/Jak2VF/+/VavCre+ mice as compared to Jak2VF/+/VavCre+ mice. In colony forming assays, we find that Tet2-/-/Jak2VF/+/VavCre+ LSK cells have enhanced re-plating activity compared to Jak2VF/+/VavCre+ LSK cells and that Tet2-/-/Jak2VF/+/VavCre+ LSK cells form more colonies that Tet2-/-/Jak2+/+/VavCre+ cells. Gene expression analysis demonstrates enrichment of a HSC self-renewal signature inTet2-/-/Jak2VF/+/VavCre+ LSK cells. Concordant with this, we find that Tet2-/-/Jak2VF/+/VavCre+ LSK cells have enhanced competitive repopulation at 16 weeks as compared to Jak2VF/+/VavCre+ and Tet2+/-/Jak2VF/+/VavCre+ LSK cells. In aggregate these findings demonstrate that Tet2 loss promotes disease progression in MPN but is insufficient to drive full leukemic transformation. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. LBA-4-LBA-4
    Abstract: Somatic mutations in calreticulin (CALR), an endoplasmic reticulum (ER) chaperone protein, are found in up to 40% of patients with myeloproliferative neoplasms (MPN). All pathologic CALR mutations are out-of-frame insertion and/or deletions (indels) in exon 9, generating a 1 base-pair (bp) frame shift and a common mutant-specific C-terminus, with the most common mutation being a 52 bp deletion (del52). The observation that CALR mutations are mutually exclusive with other MPN-initiating mutations such as JAK2V617F suggests a key pathogenic role for mutant CALR. To determine if mutant CALR alone is sufficient to induce MPN we began by over-expressing CALR-del52 in a retroviral bone marrow transplant (BMT) mouse model. We found that CALR-del52-expressing mice develop thrombocytosis and megakaryocytic hyperplasia, recapitulating the megakaryocyte-specific phenotype of CALR-mutant MPN patients. These findings suggest that the thrombopoietin receptor, MPL plays a key role in the pathogenesis of mutant CALR-driven MPN. To evaluate the role of MPL in mutant CALR driven oncogenesis, we over-expressed CALR-del52 in interleukin-3 (IL-3)-dependent Ba/F3 hematopoietic cells. We found that CALR-del52 over-expression results in transformation to IL3-independent growth only in Ba/F3 cells co-expressing MPL, but not in parental Ba/F3 cells or Ba/F3 cells co-expressing the EPO receptor (EPOR) or the G-CSF receptor (GCSFR). We found similar results in human cytokine-dependent UT-7 cells. We also introduced +1 frameshift mutations into the endogenous Calr locus in Ba/F3-MPL cells using CRISPR/Cas9 gene editing and successfully engendered IL-3 independent growth, indicating that endogenous levels of mutant Calr expression are sufficient for transformation. Together, these data indicate that MPL is specifically required for the transforming capacity of mutant CALR. Using RNA-sequencing followed by gene set enrichment analysis (GSEA), we confirmed that mutant CALR transformed Ba/F3-MPL cells display strong enrichment of Stat5 and Stat3 gene expression signatures. Concordantly, we also saw differential phosphorylation of Stat5 and Stat3 in these cells. Furthermore, we found that the IL-3 independent proliferation of mutant CALR expressing Ba/F3-MPL cells is decreased upon shRNA-mediated knockdown of Jak2, and that differential activation of Stat5 and Stat3 is abrogated by the JAK2 inhibitor, ruxolitinib. Together, these data demonstrate that mutant CALR signals through the JAK/STAT axis downstream of MPL. We next sought to define the specific domains within mutant CALR required for oncogenic transformation. We found that neither expression of the mutant C-terminus alone nor expression of CALR lacking the C-terminus leads to cytokine-independent growth, suggesting that the novel C-terminus is necessary (but not sufficient) for transformation. We therefore generated an extensive series of truncation, domain deletion and point mutations within the C-terminus and assessed their respective transforming capabilities. Surprisingly, we found that the oncogenic activity of mutant CALR is not encoded within a specific sequence or domain of the mutant C-terminus. Rather, we found that the positive electrostatic charge of the mutant C-terminus is critical for its transforming capacity. Mutagenizing all 18 lysine/arginine residues (positively charged) within the C-terminus to a neutral glycine residue abrogates CALR-del52 transformation activity. In contrast, mutagenizing the 18 non-lysine/arginine residues within the C-terminus to glycine does not affect transforming activity, a remarkable finding considering that, in this mutant, 50% of the amino acids have been modified. Finally, using co-immunoprecipitation assays we found that mutant CALR, but not wild-type CALR, physically interacts with MPL, and that neither the mutant C-terminus alone nor mutant CALR lacking the C-terminus can bind to MPL. This suggests that the tertiary structure of mutant CALR is required for binding to MPL. Moreover, we found that the ability of our engineered CALR mutants to bind MPL perfectly correlates with their ability to mediate transformation, suggesting that the interaction with MPL is critical for mutant CALR-mediated transformation. Together, our findings elucidate a novel mechanism of pathogenesis in MPN and provide insights into how CALR mutations drive the development of MPN. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 125, No. 2 ( 2015-01-08), p. 327-335
    Abstract: Tet2 loss of function confers a strong functional competitive advantage to Jak2V617F-mutant hematopoietic stem cells. Jak2V617F expression and Tet2 loss generate distinct and nonoverlapping transcriptional programs in hematopoietic stem cells.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...