GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3987-3987
    Abstract: Background: We previously demonstrated that putative clinical epidemiologic exposures associated with leukemia risk are prevalent among AML patients, and some are associated with unique cytogenetic risk group and with clinical phenotype (Finn, Cancer Epidemiol, 2015). Herein, we studied genome-wide DNA methylation in a cohort of AML patients to evaluate the association of individual hyper- and hypo-methylated CpG sites with epidemiologic exposures and overall survival. Methods: The Mayo Clinic AML Epidemiology Cohort is a highly annotated retrospective case series of 295 consecutive patients (pts) with AML diagnosed and treated at Mayo Clinic Florida and Arizona, with central cytogenetics performed in all cases. The prevalence of clinical epidemiologic exposures, past medical and family history as well as medication use and lifestyle was systematically obtained. After IRB approval, we interrogated the cytogenetic database and successfully obtained leukemia DNA from available remnant diagnostic cytogenetic cell pellets in a cohort of 148 AML patients in the Mayo epidemiology case series and performed an assessment of genome-wide DNA methylation using the Infinium HumanMethylation450K BeadChip. Samples were processed using the R Bioconductor package 'minfi' using Subset Within Array Quantile Normalization (PMID: 22703947). Individual CpGs that did not reach a detection p-value of 〈 0.05 were filtered out. An internal control was included on each array to control for significant batch effects. To determine differential methylation status of 473,864 individual CpG sites (after exclusion of 11,648 that did not pass detection p-value QC), CpG sites with low interpatient variability, a standard deviation 〈 0.05 of methylation values, and an interquartile range 〈 0.05 of methylation values and X/Y chromosome probes were excluded from analysis. Epidemiologic and important clinical variables occurring in at least 10 pts or previously-identified as of unique interest but in fewer than 10 pts were evaluated, including sex, BMI, performance status and comorbidities, tobacco and alcohol use, family history of hematologic malignancy, medications of interest, history of toxin exposure, and history of immunosuppression and/or solid organ transplant or of secondary and therapy-related AML (t-AML). Associations of differential hypo or hypermethylation at 281,259 CpG sites with epidemiologic exposures/clinical variables were evaluated using Spearman's test of correlation (continuous or ordinal exposures), a Wilcoxon rank sum test (dichotomous exposures), or a Kruskal-Wallis rank sum test (multi-category exposures). A Bonferroni correction was applied for multiple testing, after which p 〈 1.8 x 10-7 was considered as significant. To reduce the likelihood of false-negative findings, we additionally considered p 〈 5 x 10-6 as indicating suggestive evidence of an association. CpG sites and associated gene and function was determined using Illumina manifest file & www.ncbi.nlm.nih.gov/gene. Results: Statistically significant associations (p 〈 1.8 x 10-7) with individual epidemiologic and clinical exposures were identified for 109 unique CpG sites, corresponding to differential methylation in the genes listed in Table. Specifically, obesity (predominantly hypomethylation), specific cytogenetic lesions and risk group, and gender were highly significantly associated with unique CpG methylation status, but not smoking, toxin exposure, family history, comorbidity or performance status, secondary or t-AML, immunosuppression, medication use, of family history in the analysis. A further 353 unique CpG sites had defined suggestive associations (ongoing analysis). We also identified 8 additional CpG sites where differential methylation was associated with overall survival (p 〈 5 x 10-6, Table). Conclusion: Obesity, cytogenetic lesions, and sex are associated with differential methylation of unique CpG sites at AML diagnosis, using stringent univariate statistical criteria. Significant CpG sites were identified in genes previously linked to AML biology and prognosis (DOCK6, HOXB3, MIR10A, FOXN3/CHES1, GPX1, MYST2/KAT7, PTPRD), but some represent novel findings in AML. These preliminary results suggest an association of some AML risk factors and clinical variables with unique gene methylation and will undergo validation in a prospective AML epidemiology dataset. Disclosures Cerhan: Jannsen: Other: Scientific Advisory Board; Nanostring: Research Funding; Celgene: Research Funding. Foran:Agios: Research Funding; Xencor, Inc.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 141, No. 8 ( 2023-02-23), p. 904-916
    Abstract: Burkitt lymphoma (BL) accounts for most pediatric non-Hodgkin lymphomas, being less common but significantly more lethal when diagnosed in adults. Much of the knowledge of the genetics of BL thus far has originated from the study of pediatric BL (pBL), leaving its relationship to adult BL (aBL) and other adult lymphomas not fully explored. We sought to more thoroughly identify the somatic changes that underlie lymphomagenesis in aBL and any molecular features that associate with clinical disparities within and between pBL and aBL. Through comprehensive whole-genome sequencing of 230 BL and 295 diffuse large B-cell lymphoma (DLBCL) tumors, we identified additional significantly mutated genes, including more genetic features that associate with tumor Epstein-Barr virus status, and unraveled new distinct subgroupings within BL and DLBCL with 3 predominantly comprising BLs: DGG-BL (DDX3X, GNA13, and GNAI2), IC-BL (ID3 and CCND3), and Q53-BL (quiet TP53). Each BL subgroup is characterized by combinations of common driver and noncoding mutations caused by aberrant somatic hypermutation. The largest subgroups of BL cases, IC-BL and DGG-BL, are further characterized by distinct biological and gene expression differences. IC-BL and DGG-BL and their prototypical genetic features (ID3 and TP53) had significant associations with patient outcomes that were different among aBL and pBL cohorts. These findings highlight shared pathogenesis between aBL and pBL, and establish genetic subtypes within BL that serve to delineate tumors with distinct molecular features, providing a new framework for epidemiologic, diagnostic, and therapeutic strategies.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. SCI-8-SCI-8
    Abstract: Programmed death 1 (PD-1) and its ligands, PD-L1 and PD-L2, play an important role in the maintenance of peripheral tolerance. PD-1 is an inhibitory receptor that attenuates TCR signaling. Its expression is inducible on T-cells, B-cells, NKT-cells, and activated monoytes. Interactions between PD-1 and its ligands deliver inhibitory signals that regulate T-cell activation, tolerance, and immune-mediated tissue damage.A blocking anti-PD-1 mAb given at the time of transplant markedly accelerated acute GVHD lethality in preclinical models via an interferon-gamma dependent mechanism. Both PD-L1 and PD-L2 expression were upregulated in the spleen, liver, colon, and ileum of GVHD mice. PD-L2 expression was limited to hematopoietic cells, but hematopoietic and endothelial cells expressed PD-L1. PD-1/PD-L1, but not PD-1/PD-L2, blockade markedly accelerated GVHD-induced lethality. PD-L1-deficient hosts exhibit rapid mortality associated with increased gut T-cell homing and loss of intestinal epithelial integrity, increased donor T-cell proliferation, activation, Th1 cytokine production, and reduced apoptosis. Bioenergetics profile analysis of proliferating alloreactive donor T-cells demonstrated increased aerobic glycolysis and oxidative phosphorylation, hyperpolarized mitochondrial membrane potential, increased superoxide production, and increased expression of a glucose transporter. During acute GVHD, PD-L1 was up-regulated on donor T-cells. Surprisingly, GVHD-induced lethality was significantly reduced in recipients of donor T cells devoid of PD-L1 and associated with reduced PD-L1-/- donor T-cell infiltration into lymphoid organs and gut, a retention of intestinal epithelial integrity, and a lower production of inflammatory cytokines. During GVHD, PD-L1-/- donor T cells showed increased apoptosis and reduced proliferation, as well as reduced glycolysis, glutaminolysis, and fatty acid metabolism. A role for PD-L1 in glucose-mediated acetyl-CoA production was seen, highlighting the important of glucose as an important carbon source in in alloreactive T cells undergoing clonal expansion. Further data support the hypothesis that the PD-1/PD-L1 pathway regulates T-T interaction. Together our studies indicate that PD-L1 expression that is upregulated on alloreactive donor T cells increases their survival and alters their metabolic pathway utilization in GVHD mice. In contrast to acute GVHD models, we have found that PD-1 pathway blockade can reduce chronic GVHD in a mouse model of multi-organ system disease in which one prominent component is bronchiolitis obliterans. This may occur via effects on T follicular regulatory or germinal center B cells. In summary, we have identified distinct consequences of PD-1/PD-L1 engagement in preclinical acute and chronic GVHD models: PD-1/PD-L1 interactions restrain acute GVHD but increase chronic GVHD. These findings illustrate the important but complex regulatory features of this pathway on a wide array of cell types. Our finding suggests PD-1 pathway modulation may provide unique opportunities for altering immune regulation post-transplant. Disclosures Milone: Novartis: Patents & Royalties, Research Funding. Sharpe:Costim Pharmaceuticals: Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 2 ( 2021-12-04), p. LBA-4-LBA-4
    Abstract: Children with acute myeloid leukemia (AML) have a dismal prognosis due to a high relapse rate; however, the molecular basis leading to relapsed pediatric AML has not yet been fully characterized. To define the spectrum of alterations common at relapse, we performed integrated profiling of 136 relapsed pediatric AML cases with RNA sequencing (RNA-seq), whole-genome sequencing, and target-capture sequencing. In addition to well-characterized fusion oncoproteins, such as those involving KMT2A (n=36, 26.5%) or NUP98 (n=18, 13.2%), we also identified somatic mutations in UBTF (upstream binding transcription factor) in 12 of 136 cases (8.8%) of this relapsed cohort. Somatic alterations of the UBTF gene, which encodes a nucleolar protein that is a component of the RNA Pol I pre-initiation complex to ribosomal DNA promoters, have rarely been observed in AML. In our cohort, all alterations can be described as heterozygous in-frame exon 13 tandem duplications (UBTF-TD), either at the 3' end of exon 13 of UBTF or of the entire exon 13 (Fig. A). As we noticed limited detection in our pipeline as a result of complex secondary indels alongside the duplications, we established a soft-clipped read-based screening method to detect UBTF-TD more efficiently. Applying the screening to RNA-seq data of 417 additional pediatric AMLs from previous studies and our clinical service, we identified 15 additional UBTF-TDs, many of which have not been previously reported. At the amino acid level, UBTF-TDs caused amino acid insertions of variable sizes (15-181 amino acids), duplicating a portion of high mobility group domain 4 (HMG4), which includes short leucine-rich sequences. UBTF-TD AMLs commonly occurred in early adolescence (median age: 12.6, range: 2.4-19.6), and 19 of the total 27 cases had either normal karyotype (n=12) or trisomy 8 (n=7). UBTF-TD is mutually exclusive from other recurrent fusion oncoproteins, such as NUP98 and KMT2A rearrangements (Fig. B), but frequently occurred with FLT3-ITD (44.4%) or WT1 mutations (40.7%). The median variant allele fraction (VAF) of the UBTF-TD was 48.0% (range: 9.7-66.7%). In four cases with data at multiple disease time points, the identical UBTF-TDs were present at high allele fractions at all time points, suggesting that UBTF-TD is a clonal alteration. tSNE analysis of the transcriptome dataset showed that UBTF-TD AMLs share a similar expression pattern with NPM1 mutant and NUP98-NSD1 AML subtypes, including NKX2-3 and HOXB cluster genes (Fig. C) . Altogether, these findings suggest that UBTF-TD is a unique subtype of pediatric AML. To address the impact of UBTF-TD expression in primary hematopoietic cells, we introduced UBTF-TD and UBTF wildtype expression vectors into cord blood CD34+ cells via lentiviral transduction. UBTF-TD expression promotes colony-forming activity and cell growth, yielding cells with a persistent blast-like morphology (Fig. D). Further, transcriptional profiling of these cells demonstrated expression of HOXB genes and NKX2-3, similar to UBTF-TD AMLs in patients, indicating that UBTF-TD is sufficient to induce the leukemic phenotype. To investigate the prevalence of UBTF-TDs in larger de novo AML cohorts, we applied the above UBTF-TD screening method to the available de novo AML cohorts of TCGA (n=151, adult), BeatAML (n=220, pediatric and adult), and AAML1031 (n=1035, pediatric). We identified UBTF-TDs in 4.3% (45/1035) of the pediatric AAML1031 cohort, while the alteration is less common (0.9%: 3/329, p=0.002) in the adult AML cohorts (Fig. E). In the AAML1031 cohort, UBTF-TDs remain mutually exclusive with known molecular subtypes of AML and commonly occur with FLT3-ITD (66.7%) and WT1 (40.0%) mutations and either normal karyotype or trisomy 8. The presence of UBTF-TDs in the AAML1031 cohort is associated with a poor outcome (Fig. F, median overall survival, 2.3 years) and MRD positivity; multivariate analysis revealed that UBTF-TD and WT1 are independent risk factors for overall survival within FLT3-ITD+ AMLs. In conclusion, we demonstrate UBTF-TD defines a unique subtype of AMLs that previously lacked a clear oncogenic driver. While independent of subtype-defining oncogenic fusions, UBTF-TD AMLs are associated with FLT3-ITD and WT1 mutations, adolescent age, and poor outcomes. These alterations have been under-recognized by standard bioinformatic approaches yet will be critical for future risk-stratification of pediatric AML. Figure 1 Figure 1. Disclosures Iacobucci: Amgen: Honoraria; Mission Bio: Honoraria. Miller: Johnson & Johnson's Janssen: Current Employment. Mullighan: Pfizer: Research Funding; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Amgen: Current equity holder in publicly-traded company.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3952-3952
    Abstract: Abstract 3952 The clinical course of multiple myeloma (MM) is highly variable and difficult to predict. Despite ongoing improvements in the treatment, relapse remains inevitable even with novel therapies. Thereis aneed to better tailor patient-specific treatment strategies to increase efficacy without increasing side effects.There are currently no prognostic tools to predict MM patient response to a particular chemotherapy regimen, and consequently this remains a critical unmet need. Eutropics isdeveloping a novel diagnostic assay called BH3 profiling for commercial use. Initial studies at Eutropics and at the Dana Farber Cancer Institute indicate that the BH3 profiling assay is predictive for MM patient response to treatment. The assay probes mitochondria of cancer cells and indicates when or if they are able to respond to upstream apoptosis signaling induced by these treatments. The underlying principle of the assay is that as a result of aberrant phenotypes, cancer cells develop blocks in apoptosis signaling pathways. These blocks make cancer cells both resistant to some therapies, but surprisingly, make some cancer cells hyper-sensitive to other therapies. BH3 profiling determines if a dependence on certain apoptosis regulating proteins for survival occurs in given cancer cells, and identifies the dependent protein. This understanding provides a unique insight to the best course of treatment, and in particular to treatment with apoptosis inducing bortezomib combination treatments. We use the test on CD138+ plasma cells purified from MM patients prior to or during the course of treatment with bortezomib based regimens. We perform the test on either fresh or viably frozen samples obtained from patients in a prospective manner. Here we report the results of test set data from both fresh and fresh frozen archived samples. BH3 profiling measures the functional state of the pro-survival Bcl-2 and pro-apoptotic family proteins for regulating or inducing apoptosis by determining the immediate response to BH3 proteins (e.g. PUMA, NOXA, BAD). By doing this, the assay identifies the mechanical defect that leads to apoptosis resistance in a given cancer cell. It does this by selectively antagonizing each of the anti-apoptotic proteins, and directly measuring the mitochondrial response. The signature response indicates if cells will respond to apoptosis-inducing signals. Cancer cells that are predicted to respond to pro-apoptotic signals are considered “primed”. The BH3 profile also identifies which of the pro-survival Bcl-2 family members are involved in the cell death pathway. In our initial test set, samples from 12 patients with MM were evaluated by BH3 profiling. The median age at the diagnosis was 64 years (49–79). The male to female ratio was 2:1 (8 M, 4 F). Seven MM patients displayed IgG, one displayed IgA, and 4 displayed light chain restriction. Four patients had high risk cytogenetics, the remaining had standard risk. Nine patients initiated treatment with a bortezomib based regimen to date. We have observed that the extent of priming in biopsied multiple myeloma cells prior to therapy correlates very closelywith the decrease in M-spike in response to bortezomibbased therapies. This technique shows great promise as a clinical diagnostic capable of predicting response to bortezomib based therapy and could provide physicians with invaluable information for predicting the course of treatment for multiple myeloma. Disclosures: Thomenius: Eutropics Pharmaceuticals: Employment, Salary. Lena:AEutropics Pharmaceuticals: Employment, salary. Chonghaile:Eutropics Pharmaceuticals: Consultancy, fee. Lyle:Eutropics Pharmceuticals: Consultancy, Employment. Letai:Eutropics Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees. Cardone:Eutropics Pharmaceuticals: Employment, Equity Ownership, salary.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 207-207
    Abstract: Natural killer (NK) cells are innate effector cells that can spontaneously recognize and kill cancer cells. While important in inducing long-term disease free survival (DFS) in the setting of killer immunoglobulin-like receptor (KIR) mismatch for acute myeloid leukemia (AML), harnessing NK cells to kill autologous or self AML blasts to extend DFS has had no success. In this study, we uncover one potential mechanism by which AML blasts can evade NK cell cytotoxicity. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that has now been shown to be expressed in immature human NK cells. Furthermore, activation of AHR in these immature cells suppresses human NK cell maturation and function. We and others have shown that human AML blasts secrete ligands that can activate AHR, leading us to hypothesize that AML may evade autologous NK cell cytotoxicity in part by inhibiting NK cell maturation. Expression of microRNA (miR)-29b has previously been shown to suppress the expression of transcription factors Tbx21 (TBET) and Eomesodermin (EOMES), both of which are critical for terminal NK cell differentiation and function. Here we show that AHR is able to directly regulate the expression of miR-29b and thus may serve as the link between AML and immune evasion of NK cells. We first identified putative AHR binding sites within the proximal promoter of miR-29b, suggesting that AHR may directly regulate miR-29b expression. To test this, we transfected the AHR responsive HepG2 human cell line with a miR-29b promoter driven luciferase reporter and measured luciferase activity after treatment with the known AHR agonist, FICZ, compared to vehicle control. We discovered that cells treated with 6-formylindolol[3,2-b]carbazole (FICZ) had increased luciferase activity compared to cells treated with vehicle control (P 〈 0.05). This effect was subsequently shown to be directly mediated by AHR, as mutation of the putative AHR binding site as well as siRNA targeting of AHR mRNA both significantly diminished the induced luciferase activity (P 〈 0.01). We then established the importance of miR-29b in human NK cell development by transducing immature NK cells, characterized as Lin(-)CD117(+)CD94(-), with a miR-29b knockdown virus and testing for the ability of these cells to become mature [i.e., Lin(-)CD117(-)CD94(+)] NK cells, after two weeks in IL-15 and FICZ. Indeed, in early experiments, knockdown of miR-29b resulted in increased percentages of mature NK cells compared to cells transduced with control virus (16.8% compared to 3.6%, respectively), despite being cultured with an AHR agonist. Finally, utilizing a translational in vivo murine AML model developed by our laboratory that recapitulates human AML, we have found that AML blasts harvested from these leukemic mice release an AHR agonist (P 〈 0.01), similar to previous reports that have described AHR ligands being produced by human AML blasts. In addition,NK cells isolated from these mice have increased levels of miR-29b when leukemic, compared to NK cells from wild type control littermates, consistent with our hypothesis that AHR regulates miR-29b expression. Thus, we propose that AHR, when activated by AML-derived ligands, upregulates miR-29b in NK cells to ultimately suppress the primary regulators of NK cell maturation and function, resulting in immune evasion (See Figure). Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 135, No. 1 ( 2020-01-2), p. 28-40
    Abstract: T-cell activation leads to regulated increases in cytoplasmic calcium through inositol 1,4,5-triphosphate (IP3), a process balanced by phosphorylation and inactivation of IP3 by inositol 1,4,5-trisphosphate 3-kinase B (Itpkb). The investigators demonstrate that inhibition of Itpkb sustains increased intracellular Ca, leads to T-cell apoptosis, and inhibits graft-versus-host disease without impairing graft-versus-leukemia effects.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood Advances, American Society of Hematology, Vol. 4, No. 1 ( 2020-01-14), p. 181-190
    Abstract: Persons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM) compared with persons of European ancestry (EA). Genome-wide association studies (GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known about genetic risk factors for MM in individuals of AA. We performed a meta-analysis of 2 GWASs of MM in 1813 cases and 8871 controls and conducted an admixture mapping scan to identify risk alleles. We fine-mapped the 23 known susceptibility loci to find markers that could better capture MM risk in individuals of AA and constructed a polygenic risk score (PRS) to assess the aggregated effect of known MM risk alleles. In GWAS meta-analysis, we identified 2 suggestive novel loci located at 9p24.3 and 9p13.1 at P & lt; 1 × 10−6; however, no genome-wide significant association was noted. In admixture mapping, we observed a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM risk in AA individuals. Of the 23 known EA risk variants, 20 showed directional consistency, and 9 replicated at P & lt; .05 in AA individuals. In 8 regions, we identified markers that better capture MM risk in persons with AA. AA individuals with a PRS in the top 10% had a 1.82-fold (95% confidence interval, 1.56-2.11) increased MM risk compared with those with average risk (25%-75%). The strongest functional association was between the risk allele for variant rs56219066 at 5q15 and lower ELL2 expression (P = 5.1 × 10−12). Our study shows that common genetic variation contributes to MM risk in individuals with AA.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 438-438
    Abstract: Protein Arginine Methyltransferase-5 (PRMT5) has been reported to play a role in multiple diverse cellular processes including tumorigenesis. Overexpression of PRMT5 has been demonstrated in cell lines and primary patient samples derived from lymphomas, particularly Mantle Cell Lymphoma (MCL). Furthermore, knockdown of PRMT5 expression inhibits the proliferation of MCL cell lines. The mechanisms behind the oncogenic potential of PRMT5 are unclear, but the protein has been postulated to regulate processes such as cell death, cell cycle progression, and RNA processing through the dimethylation of arginine residues within a variety of cytoplasmic and nuclear target proteins. Epizyme developed small molecule inhibitors of PRMT5 enzyme activity in order to understand the role of PRMT5-mediated arginine methylation in tumorigenesis and to develop PRMT5-targeted cancer therapeutics. Here, we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with anti-proliferative effects in both in vivo and in vitro models of MCL. A diverse compound library was screened for inhibitors of arginine methylation by purified recombinant PRMT5:MEP50 complex and multiple hits were identified. The inhibitors are SAM uncompetitive, peptide competitive and bind with the PRMT5:MEP50 complex in a unique binding mode not previously observed. Further optimization yielded YQ36286, an orally available inhibitor of PRMT5 with enzymatic activity in biochemical assays with an IC50 in the low nM range and broad selectivity against a panel of other histone methyltransferases. YQ36286 demonstrated potent cellular activity as measured by its ability to inhibit symmetric dimethylation of SmD3, a cytoplasmic PRMT5 substrate in a time- and concentration-dependent manner. Treatment of MCL cell lines with YQ36286 led to inhibition of SmD3 methylation and cell killing, with IC50s in the nM range. Oral dosing of YQ36286 demonstrated dose-dependent anti-tumor activity in multiple MCL xenograft models. In xenograft studies with the Z138 MCL cell line, near 95% tumor growth inhibition was observed after 21 days of dosing with a corresponding decrease in symmetrically dimethylated levels of PRMT5 substrates. In summary, we have developed the first potent and selective small molecule inhibitor of PRMT5 that has cellular activity and in vivo efficacy. MCL cells are dependent on PRMT5 activity for their survival as demonstrated with YQ36286. This small molecule represents a starting point for the development of PRMT5 inhibitors as potential cancer therapeutics. Disclosures Penebre: Company stock options: Equity Ownership; Epizyme Inc.: Employment; GSK Research Funding: Research Funding. Kuplast:GSK research funding: Research Funding; Company Stock options: Equity Ownership; Epizyme Inc.: Employment. Majer:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Johnston:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Rioux:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Munchhof:Epizyme Inc.: Employment; GSK research funding: Research Funding. Jin:Epizyme Inc.: Employment; GSK research funding: Research Funding; Company stock options: Equity Ownership. Boriak-Sjodin:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Wigle:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Jacques:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. West:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Lingaraj:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Stickland:GSK research funding: Research Funding; Company Stock options: Equity Ownership; Epizyme Inc.: Employment. Ribich:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Raimondi:Epizyme: Employment, Equity Ownership; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Porter-Scott:Company stock options: Equity Ownership; GSK research funding: Research Funding; Epizyme Inc.: Employment. Waters:Epizyme, Inc: Employment, Equity Ownership; GSK research funding: Research Funding. Pollock:Epizyme: Employment, Equity Ownership; GSK research funding: Research Funding. Smith:GSK research funding: Research Funding; Epizyme: Employment, Equity Ownership. Barbash:GlaxoSmithKline Pharmaceuticals: Employment. Kruger:GlaxoSmithKline Pharmaceuticals: Employment, Equity Ownership. Copeland:Mersana: Membership on an entity's Board of Directors or advisory committees; Epizyme, Inc: Employment, Equity Ownership; Celgene, Inc: Research Funding; Eisai Inc: Research Funding; Glaxo Smith Kline, Inc: Research Funding; Multiple Myeloma Research Foundation: Research Funding; Leukemia and Lymphoma Society: Research Funding; New Enterprise Associates: Ad hoc consultant, Ad hoc consultant Other. Moyer:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Chesworth:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding. Duncan:Epizyme Inc.: Employment; Company Stock options: Equity Ownership; GSK research funding: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 46-47
    Abstract: Background: Ibrutinib (I) and venetoclax (V) have each demonstrated modest single-agent activity in relapsed/refractory follicular lymphoma (FL) (Gopal A, JCO 2018; Davids M, JCO 2017). Preclinical data have shown synergy with these agents in B-cell cell lines (Kuo H, Mol Cancer Ther 2017). Based on these observations, we proposed the first trial to combine I and V in FL. Results from the phase Ib portion of this multi-institutional investigator-initiated trial are presented here (NCT02956382). Methods: This phase Ib/II trial is open at Georgetown/Lombardi CCC, Hackensack/John Theurer CC, and University of Washington/Fred Hutchinson/Seattle Cancer Care Alliance. Eligibility criteria include WHO grade 1-3a FL, & gt;1 prior systemic therapy, measurable disease warranting therapy by standard criteria or physician discretion, ECOG performance status & lt; 2, adequate marrow, hepatic, renal function. Patients (pts) were enrolled in a standard phase I 3+3 design at a starting dose level (DL) of I 420 mg daily, V 400 mg daily (DL0). The highest initially planned dose level was DL3: I 560 mg daily, V 800 mg daily. There was no dose ramp up of V based on monotherapy experience in FL. Pts at high risk for tumor lysis syndrome (TLS), defined as node ≥ 8 cm and/or significant lymphocytosis, were hospitalized for initial dose. Pts received study drugs until progression or unacceptable toxicity. Response was assessed by PET-CT and bone marrow biopsy (if marrow involvement present at time of enrollment). Results: Sixteen pts were enrolled between November 2017 - May 2020. Median age was 66 years (range 50-87); 75% were male; 75% were Stage III/IV, 94% had WHO grade 1/2 FL (Table 1). FLIPI score at enrollment was 25% low risk, 44% intermediate risk, 31% high risk. Two pts were considered high risk for TLS. Pts received a median of 2 prior therapies (range 1-8); 19% were refractory to last line of therapy. Cohort enrollment was: DL0 (n=3), DL1 (n=6), DL2 (n=6), DL3 (n=1). The protocol was amended to close DL3 based on pharmacokinetic data from DL2 indicating a 1.8-fold higher mean steady-state ibrutinib plasma exposure compared to ibrutinib 560 mg monotherapy and concern for potential toxicity. Grade 3 adverse events (AE) included neutropenia (25%), thrombocytopenia (13%), lung infection (13%), upper respiratory infection (6%), neutropenic fever (6%), atrial fibrillation (6%), ALT/AST elevations (6%), mucositis (6%), failure to thrive in setting of progression (6%), abdominal pain (6%). There were no grade 4/5 AE. Grade 1/2 AE occurring in & gt; 20% of pts included diarrhea (75%), nausea (63%), bruising (38%), rash (31%), headache (31%), constipation (25%), fatigue (25%). There was no evidence of clinical TLS; 19% had grade 1 hyperuricemia. The pt enrolled at DL3 had grade 1 diarrhea, grade 1 neutropenia. One dose limiting toxicity (DLT) occurred at DL1 (I 560 mg, V 400 mg): grade 3 neutropenia with fever and infection. There were no other DLTs. Therefore, DL2 (I 560 mg, V 600 mg) was determined to be the recommended phase 2 dose (RP2D). The ORR was 69% (0.413, 0.890); CR 25% (0.073, 0.524). The ORR at the RP2D was 83% (CR 33%). Responses by dose level are listed in Table 2. The regimen demonstrated activity in the bone marrow; 2 pts had eradication of involvement and 1 had a decrease from 60% to 0.5% by flow cytometry. Response by lines of prior therapy: 1 (86%, 6/7), & gt; 2 (56%, 5/9). Most pts (91%) had a response by time of first assessment (12 weeks). The median progression-free survival (PFS) was 8.3 months (5.6 months, NA) (Figure 1). Of note, 2 responding pts chose to withdraw from study due to travel and were censored in the PFS analysis at time of discontinuation. One remained in a CR at least 9 months after study withdrawal as documented by PET-CT performed off protocol. No pts discontinued due to toxicity. Conclusion: In the first clinical trial to combine a BTK inhibitor and a BCL-2 inhibitor in relapsed/refractory FL, we found the I-V doublet to demonstrate a toxicity profile similar to that seen in mantle cell lymphoma and CLL. While our sample size is small, there was no evidence of clinical TLS, despite omission of the V ramp up. Preliminary results of anti-tumor activity are encouraging and further evaluation at the RP2D (I 560 mg, V 600 mg) is ongoing in the phase II trial. The combination of ibrutinib and venetoclax may provide an effective option for FL, utilizing a targeted approach distinct from other novel agents currently approved for this malignancy. Disclosures Ujjani: Verastem Oncology: Consultancy, Honoraria; Genentech: Consultancy, Honoraria; MorphoSys: Consultancy; Atara: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Gilead/Kite: Consultancy, Research Funding. Lai:Agios: Consultancy; Macrogenics: Consultancy; Astellas: Speakers Bureau; Jazz: Speakers Bureau; Abbvie: Consultancy. Leslie:Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; KitePharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS: Speakers Bureau; Celgene: Speakers Bureau; BeiGene: Honoraria, Speakers Bureau; Pharmacyclics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AstraZeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Epizyme: Honoraria, Speakers Bureau; Karyopharm: Honoraria, Speakers Bureau; Bayer: Consultancy, Membership on an entity's Board of Directors or advisory committees; ADC therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Broome:sanofi: Honoraria; argenx: Honoraria; apellis: Honoraria; Alexion: Honoraria. Gopal:IgM bio, BMS, merck: Research Funding; imab bio, takeda,astrazeneca,gilead: Research Funding; Seattle Genetics; Janssen; IMab Bio; TG Therapeutics; Astra Zeneca; Merck; Gilead; ADC Therapeutics; Nurix; TG therapeutics, Cellectar; Actinium: Consultancy; Seattle Genetics; Janssen; Takeda; IgM Bio; IMab Bio; BMS; Astra Zeneca; Merck; Gilead: Research Funding. Smith:Beigene: Consultancy; Millenium/Takeda: Consultancy; AstraZeneca: Consultancy; Portola: Research Funding; Seattle Genetics: Research Funding; Pharmacyclics: Research Funding; Merck: Research Funding; Incyte: Research Funding; Ignyta: Research Funding; Genentech: Research Funding; De Novo Biopharma: Research Funding; Bristol Meyers Squibb: Research Funding; Ayala: Research Funding; Acerta Pharma BV: Research Funding; AstraZeneca: Research Funding; Bayer: Research Funding; Karyopharm: Consultancy. Till:Mustang: Patents & Royalties, Research Funding. Lynch:Morphosys: Consultancy; Takeda: Research Funding; Bayer: Research Funding; TG therapeutics: Research Funding; Incyte: Research Funding; Juno: Research Funding; Cyteir: Research Funding; Genentech: Research Funding; Rhizen: Research Funding. Shadman:Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; TG therapeutics: Research Funding; Celgene: Research Funding; Sunesis: Research Funding; Gilead: Research Funding; AstraZeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees; Verastem: Consultancy, Membership on an entity's Board of Directors or advisory committees; ADC Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Atara Biotherapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cellectar: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mustang Bio: Research Funding; BeiGene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Ended employment in the past 24 months; MophoSys: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sound Biologics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Maloney:Novartis: Consultancy, Honoraria; Bioline Rx: Consultancy, Honoraria; Juno Therapeutics: Consultancy, Honoraria, Patents & Royalties: Patents are pending, but not issued, licensed, no royalties, no licensees., Research Funding; A2 Biotherapeutics: Consultancy, Current equity holder in publicly-traded company, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Kite, a Gilead Company: Consultancy, Honoraria, Research Funding; Gilead Sciences: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; MorphoSys: Consultancy, Honoraria; Genentech: Consultancy, Honoraria; Pharmacyclics: Consultancy, Honoraria. Cheson:TG Therapeutics: Speakers Bureau; Symbio: Membership on an entity's Board of Directors or advisory committees; Kite: Consultancy; Karyopharm: Consultancy, Membership on an entity's Board of Directors or advisory committees; Morphosys: Consultancy; Trillium: Research Funding; Abbvie: Consultancy, Research Funding; Jannsen: Consultancy; Pharmacyclics: Consultancy, Research Funding; Parexel: Consultancy; GSK: Membership on an entity's Board of Directors or advisory committees. OffLabel Disclosure: We are presenting data regarding the use of venetoclax and ibrutinib in follicular lymphoma.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...