GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (5)
  • 1
    In: Blood, American Society of Hematology, Vol. 104, No. 13 ( 2004-12-15), p. 4157-4164
    Abstract: Natural killer (NK) cells are a component of the innate immunity against viral infections through their rapid cytotoxic activity and cytokine production. Although the synthetic double-stranded (ds) RNA polyinosinic-polycytidylic acid (poly I:C), a mimic of a common product of viral infections, is known to rapidly up-regulate their in vivo functions, NK cell ability to directly respond to dsRNA is still mostly unknown. Our results show that treatment with poly I:C significantly up-regulates both natural and CD16-mediated cytotoxicity of highly purified human NK cells. Poly I:C also induces the novel capability of producing CXCL10 chemokine in human NK cells and synergistically enhances interferon-γ (IFN-γ) production induced by either adaptive or innate cytokines. In accordance with the expression of Toll-like receptor-3 (TLR3) and of TRIF/TICAM-1 adaptor, poly I:C stimulation induces the activation of interferon regulatory factor-3 (IRF-3) transcription factor and of p38 mitogen-activated protein kinase (MAPK) in human NK cells. Finally, we demonstrate that p38 MAPK activity is required for the dsRNA-dependent enhancement of cytotoxicity and CXCL10 production. The occurrence of dsRNA-induced signaling and functional events closely correlates with the TLR3 mRNAprofile in different NK cell populations. Taken together, these data identify p38 as a central component of NK cell ability to directly respond to dsRNA pathogen-associated molecular pattern (PAMP).
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2005
    In:  Blood Vol. 106, No. 2 ( 2005-07-15), p. 577-583
    In: Blood, American Society of Hematology, Vol. 106, No. 2 ( 2005-07-15), p. 577-583
    Abstract: The activation of phosphoinositide metabolism represents a critical step in the signaling pathways leading to the activation of cytolytic machinery, but its regulation is partially understood. We report here that the stimulation of the low-affinity receptor for immunoglobulin G (IgG) (FcγRIIIA, CD16) on primary human natural killer (NK) cells induces a phosphatidylinositol 3-kinase (PI3K)–dependent activation of the small G protein Arf6. We first demonstrate a functional role for Arf6-dependent signals in the activation of the antibody-dependent cellular cytotoxicity (ADCC) attributable to the control of secretion of lytic granule content. We also show that Arf6 couples CD16 to the lipid-modifying enzymes phosphatidylinositol4phosphate 5-kinase type I alpha (PI5KIα) and phospholipase D (PLD) that are involved in the control of granule secretion; Arf6, but not Rho family small G proteins RhoA and Rac1, is required for receptor-induced PI5KIα membrane targeting as well as for PI5KIα and PLD activation. Our findings suggest that Arf6 plays a crucial role in the generation of a phosphatidylinositol4,5-bisphosphate (PIP2) plasma membrane pool required for cytolytic granule-mediated target cell killing.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2008
    In:  Blood Vol. 111, No. 8 ( 2008-04-15), p. 4165-4172
    In: Blood, American Society of Hematology, Vol. 111, No. 8 ( 2008-04-15), p. 4165-4172
    Abstract: Although membrane phospholipid phosphatidylinositol-4,5bisphosphate (PIP2) plays a key role as signaling intermediate and coordinator of actin dynamics and vesicle trafficking, it remains completely unknown its involvement in the activation of cytolytic machinery. By live confocal imaging of primary human natural killer (NK) cells expressing the chimeric protein GFP-PH, we observed, during effector-target cell interaction, the consumption of a preexisting PIP2 pool, which is critically required for the activation of cytolytic machinery. We identified type I phosphatidylinositol-4-phosphate-5-kinase (PI5KI) α and γ isoforms as the enzymes responsible for PIP2 synthesis in NK cells. By hRNA-driven gene silencing, we observed that both enzymes are required for the proper activation of NK cytotoxicity and for inositol-1,4,5-trisphosphate (IP3) generation on receptor stimulation. In an attempt to elucidate the specific step controlled by PI5KIs, we found that lytic granule secretion but not polarization resulted in impaired PI5KIα- and PI5KIγ-silenced cells. Our findings delineate a novel mechanism implicating PI5KIα and PI5KIγ isoforms in the synthesis of PIP2 pools critically required for IP3-dependent Ca2+ response and lytic granule release.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 100, No. 13 ( 2002-12-15), p. 4581-4589
    Abstract: Membrane recruitment of the SH2containing 5′ inositol phosphatase 1 (SHIP-1) is responsible for the inhibitory signals that modulate phosphatidylinositol 3-kinase (PI3K)–dependent signaling pathways. Here we have investigated the molecular mechanisms underlying SHIP-1 activation and its role in CD16-mediated cytotoxicity. We initially demonstrated that a substantial fraction of SHIP-1–mediated 5′ inositol phosphatase activity associates with CD16 ζ chain after receptor cross-linking. Moreover, CD16 stimulation on human primary natural killer (NK) cells induces the rapid and transient translocation of SHIP-1 in the lipid-enriched plasma membrane microdomains, termed rafts, where it associates with tyrosine-phosphorylated ζ chain and shc adaptor protein. As evaluated by confocal microscopy, CD16 engagement by reverse antibody-dependent cellular cytotoxicity (ADCC) rapidly induces SHIP-1 redistribution toward the area of NK cell contact with target cells and its codistribution with aggregated rafts where CD16 receptor also colocalizes. The functional role of SHIP-1 in the modulation of CD16-induced cytotoxicity was explored in NK cells infected with recombinant vaccinia viruses encoding wild-type or catalytic domain–deleted mutant SHIP-1. We found a significant SHIP-1–mediated decrease of CD16-induced cytotoxicity that is strictly dependent on its catalytic activity. These data demonstrate that CD16 engagement on NK cells induces membrane targeting and activation of SHIP-1, which acts as negative regulator of ADCC function.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2002
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 110, No. 2 ( 2007-07-15), p. 606-615
    Abstract: Recent evidence indicates that natural killer (NK) cells can negatively regulate T-cell responses, but the mechanisms behind this phenomenon as a consequence of NK–T-cell interactions are poorly understood. We studied the interaction between the NKG2D receptor and its ligands (NKG2DLs), and asked whether T cells expressed NKG2DLs in response to superantigen, alloantigen, or a specific antigenic peptide, and if this rendered them susceptible to NK lysis. As evaluated by FACS, the major histocompatibility complex (MHC) class I chain-related protein A (MICA) was the ligand expressed earlier on both CD4+ and CD8+ T cells in 90% of the donors tested, while UL16-binding protein-1 (ULBP)1, ULBP2, and ULBP3 were induced at later times in 55%–75% of the donors. By carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, we observed that NKG2DLs were expressed mainly on T cells that had gone through at least one division. Real-time reverse-transcription polymerase chain reaction confirmed the expression of all NKG2DLs, except ULBP4. In addition, T-cell activation stimulated phosphorylation of ataxia-telangiectasia mutated (ATM), a kinase required for NKG2DLs expression after DNA damage, and ATM/Rad3-related kinase (ATR) inhibitors blocked MICA induction on T cells with a mechanism involving NF-κB. Finally, we demonstrated that activated T cells became susceptible to autologous NK lysis via NKG2D/NKG2DLs interaction and granule exocytosis, suggesting that NK lysis of T lymphocytes via NKG2D may be an additional mechanism to limit T-cell responses.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...