GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 113, No. 23 ( 2009-06-04), p. 5999-6010
    Abstract: Invariant natural killer T cells (iNKT cells) have pivotal roles in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects. iNKT cells are activated through their T-cell receptors by glycolipid moieties (typically the α-galactosylceramide [α-GalCer] derivative KRN7000) presented within CD1d. We investigated the ability of modified α-GalCer molecules to differentially modulate alloreactivity and GVL. KRN7000 and the N-acyl variant, C20:2, were administered in multiple well-established murine models of allogeneic stem cell transplantation. The highly potent and specific activation of all type I NKT cells with C20:2 failed to exacerbate and in most settings inhibited GVHD late after transplantation, whereas effects on GVL were variable. In contrast, the administration of KRN7000 induced hyperacute GVHD and early mortality in all models tested. Administration of KRN7000, but not C20:2, was found to result in downstream interleukin (IL)-12 and dendritic cell (DC)–dependent natural killer (NK)– and conventional T-cell activation. Specific depletion of host DCs, IL-12, or donor NK cells prevented this pathogenic response and the induction of hyperacute GVHD. These data demonstrate the ability of profound iNKT activation to modulate both the innate and adaptive immune response via the DC–NK-cell interaction and raise concern for the use of α-GalCer therapeutically to modulate GVHD and GVL effects.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 3499-3499
    Abstract: G-CSF is often used to hasten neutrophil recovery following allogeneic bone marrow transplantation (BMT), but the clinical and immunological consequences invoked remain unclear. We examined this in murine models and found that administration of both standard G-CSF and pegylated G-CSF early after BMT significantly increased graft-versus-host disease (GVHD). This effect was seen in the B6 → B6D2F1, BALB/c → B6 and C3H.SW → B6 systems of GVHD to either MHC or multiple minor histocompatibility antigens. This effect was dependent on total body irradiation (TBI) rendering host dendritic cells (DC) responsive to G-CSF by up-regulating their expression of the G-CSF receptor as determined by real-time PCR. This induction of G-CSFR expression was not seen following busulfan (Bu), cyclophosphamide (Cy) or fludarabine. The enhanced GVHD was present when G-CSF was administered to both WT and G-CSFR−/− donors but not G-CSFR−/− recipients, confirming that host signalling was critical for this effect. G-CSF administration after BMT had no effect on inflammatory cytokine generation but enhanced in vivo CTL activity after BMT when administered to WT but not G-CSFR−/−, CD1d−/−, IFNgR−/− or CD40−/− recipients. Furthermore, donor iNKT cell activation was absent in CD11c Diptheria Toxin Receptor recipient transgenic mice depleted of dendritic cells (DC) by diphtheria toxin and treated with G-CSF. Thus, stimulation of host DC by G-CSF subsequently unleashed a cascade of events characterized by CD1d dependent donor iNKT cell activation, IFNg secretion and CD40-dependent amplification of donor CTL function during the effector phase of GVHD. Critically, the detrimental effects of G-CSF on GVHD were present when administered early following TBI conditioning and at a time when residual host APC were still present (day +1), but had no effect when administered at day +8 when host DC were not detectable by phenotypic or functional analysis. This is consistent with the inefficient cross presentation of host Ag within MHC class I by donor DC after BMT. In addition, the administration of G-CSF after Bu/Cy conditioning had no effect, perhaps explaining the conflicting and somewhat controversial clinical studies from the large European and North American BMT registries since TBI conditioning predominated only in the positive European study. These data have major implications for the use of G-CSF in disease states where NKT cell activation may have important effects on outcome and suggest a guide to the safe use of G-CSF after allogeneic BMT.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 132, No. 17 ( 2018-10-25), p. 1737-1749
    Abstract: The genetic cause of SCID impacts on survival and immune reconstitution and should be considered in tailoring HCT for individual patients. Total and naive CD4+ cell counts in SCID patients 6 and 12 months post-HCT predict long-term survival and sustained immune reconstitution.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 115, No. 1 ( 2010-01-07), p. 122-132
    Abstract: Tumor necrosis factor (TNF) is a key cytokine in the effector phase of graft-versus-host disease (GVHD) after bone marrow transplantation, and TNF inhibitors have shown efficacy in clinical and experimental GVHD. TNF signals through the TNF receptors (TNFR), which also bind soluble lymphotoxin (LTα3), a TNF family member with a previously unexamined role in GVHD pathogenesis. We have used preclinical models to investigate the role of LT in GVHD. We confirm that grafts deficient in LTα have an attenuated capacity to induce GVHD equal to that seen when grafts lack TNF. This is not associated with other defects in cytokine production or T-cell function, suggesting that LTα3 exerts its pathogenic activity directly via TNFR signaling. We confirm that donor-derived LTα is required for graft-versus-leukemia (GVL) effects, with equal impairment in leukemic clearance seen in recipients of LTα- and TNF-deficient grafts. Further impairment in tumor clearance was seen using Tnf/Lta−/− donors, suggesting that these molecules play nonredundant roles in GVL. Importantly, donor TNF/LTα were only required for GVL where the recipient leukemia was susceptible to apoptosis via p55 TNFR signaling. These data suggest that antagonists neutralizing both TNF and LTα3 may be effective for treatment of GVHD, particularly if residual leukemia lacks the p55 TNFR.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 567-567
    Abstract: Introduction Disease relapse is the leading cause of death in secondary AML (sAML), which evolves from antecedent hematologic disorders like myelodysplastic syndrome (MDS) or myeloproliferative neoplasms (MPNs) or following exposure to chemotherapy. Persistence of therapy-resistant leukemia stem cells (LSC) harboring enhanced survival and self-renewal capacity has been linked to high relapse rates in sAML. Previously, we showed that missplicing of a stem cell regulatory gene, GSK3 b, and splice isoform switching favoring pro-survival BCL2 family isoform expression promoted generation of therapy-resistant LSC (Abrahamsson et al PNAS 2009; Goff et al Cell Stem Cell 2013). However, whether aberrant pre-mRNA splicing promotes sAML LSC generation, in the absence of mutation, and if pharmacological splicing modulation impairs LSC maintenance, in a mutation-independent manner, has not been elucidated. Methods and Results Comparative RNA-sequencing and gene set enrichment analyses revealed significant alterations in splicing factor gene expression in purified progenitors from untreated sAML compared with normal samples. In addition, using an isoform-specific alignment algorithm, we established a sAML LSC splice isoform expression signature that identified increased expression of select transcripts, e.g. CD82 and PTK2B. Thus, we investigated the LSC inhibitory efficacy of a stable, potent splicing modulatory agent, 17S -FD-895, in humanized AML LSC stromal co-culture and primagraft assays. Notably, there was a dose-dependent reduction in AML LSC (n=4) survival and self-renewal after in vitro 17S -FD-895 treatment, with a favorable therapeutic index compared to normal controls (n=3, p 〈 0.01). Splicing reporter activity and PCR analyses revealed rapid and potent 17S -FD-895-induced alterations in splicing, promoting pro-apoptotic isoform expression and intron inclusion in the stem cell regulatory gene MCL1. Also, 17S -FD-895 restored normal expression patterns of PTK2B, and MCL1-L/S and BLC2-L/S expression ratios. Flow cytometric analyses in AML LSC primagraft models treated with 17S -FD-895 (5-10 mg/kg delivered intravenously in 3 doses over 2 weeks) revealed a decrease in human stem (CD45+ CD34+ CD38- Lin-, 68% reduction in the spleens of the 10 mg/kg group versus vehicle controls, n=5 mice per group, p 〈 0.05) and progenitor (CD45+ CD34+ CD38+ Lin-, 80% reduction to nearly zero in the spleens of the 10 mg/kg group versus vehicle controls, p=0.08) cell frequencies. Furthermore, MCL1-L/S and BCL2-L/S expression ratios were significantly reduced in LSC-enriched fractions from 17S -FD-895-treated mice compared to vehicle controls. Consistent with a reduction in functional LSC burden after 17S -FD-895 treatment, subsequent serial transplantation studies showed a 47-65% reduction in leukemic burden in the hematopoietic tissues of recipients of CD34+ cells from mice in the 10 mg/kg treatment group versus vehicle controls (n=5 mice per group, p 〈 0.05). Conclusions Here we demonstrate that a potent and stable splicing modulatory agent, 17S -FD-895, normalized sAML-specific splice isoform expression patterns as well as MCL1-L/S and BLC2-L/S ratios. Moreover, pharmacologic splicing modulation reduced AML LSC survival and self-renewal in a dose-dependent manner in both in vitro and in vivo models with a favorable therapeutic index. Further evaluation of this compound as a splicing-targeted single agent or combined with standard of care therapy may reduce or eradicate LSC burden in therapy-resistant sAML. In addition, LSC-specific splice isoforms may represent important biomarkers that could be developed as companion diagnostics for splicing-targeted therapies in sAML and other recalcitrant malignancies. Disclosures Jamieson: Johnson & Johnson: Research Funding; GlaxoSmithKline: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 3510-3510
    Abstract: TNF is a key cytokine in the effector phase of both graft-versus-host disease (GVHD) and the graft-versus leukemia (GVL) effect after bone marrow transplantation (BMT). TNF neutralizing antibodies are now established as effective therapeutic adjuncts for the treatment of severe acute GVHD. TNF signals through the p55 and p75 TNF receptors (TNFR), which are also receptors for the soluble lymphotoxin homotrimer (LTα3). The membrane-bound lymphotoxin heterotrimeric molecule (LTα1β2) signals through the LTβ receptor. The function of these molecules in GVHD remains unknown. Pharmacological agents are available which block either TNF alone, or both TNF and LTα3 and elucidating the roles of these molecules in GVHD is essential for the design of rational therapeutic strategies. We have employed multiple well established preclinical models of GVHD to investigate the roles of these molecules. We first used a functional bioassay to confirm that a human TNFR:Fc construct was capable of preventing physiological activity of both recombinant murine TNF and LTα3. Irradiated B6D2F1 recipients were then transplanted with allogeneic B6.TNF−/− bone marrow and T cells, then treated with control Ig or the TNFR:Fc. Suprisingly, the TNFR:Fc provided significant protection from GVHD mortality in the absence of donor derived TNF (median survival 25.5 vs 35 days, P 〈 0.0002). Having observed a potentially TNF-independent but TNFR dependent pathway in the generation of GVHD we next examined mRNA expression by real-time PCR. This demonstrated that the majority of LTα mRNA was within donor CD4 T cells and that expression was unbalanced ( 〉 3 logs more LTα than LTβ). We subsequently developed the first reported ELISA to assess murine LTα3 protein and were able to clearly demonstrate LTα3 production by wild-type (WT) CD4 T cells seven days after BMT. To further examine this molecule, we performed experiments using WT, LTα−/− or LTβ−/− donor grafts in two BMT systems (B6 → B6D2F1 and B6 → BALB/c). Recipients of LTα−/− grafts were protected from GVHD (P 〈 0.01) in both systems while LTβ−/− grafts induced GVHD that was equivalent to, or more severe than in recipients of WT grafts. This data confirms soluble LTα3 but not membrane bound LTα1β2 as an additional pathogenic molecule in GVHD. Using a luciferase-expressing, host-type leukemia (P815) in the B6 → B6D2F1 system, relapse occurred at an identical rate in recipients of WT and LTα−/− grafts confirming that GVL is maintained in the absence of donor derived soluble LTα3. Thus the combined neutralization of both LTα3 and TNF represents an important and logical therapeutic intervention in transplant medicine.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3776-3776
    Abstract: Abstract 3776 Cumulative evidence suggests that dormant self-renewing leukemia stem cells (LSC) contribute to relapse and blast crisis transformation by evading therapies that target cycling cells. Previously, sonic hedgehog (Shh) signaling was shown to modulate cell cycle regulation and self-renewal in normal mouse hematopoietic stem cells. However, its role in human LSC regeneration and quiescence had not been elucidated. Here we investigated the role of Shh signaling in maintenance of dormancy. We show that, compared to chronic phase CML and normal progenitors, human blast crisis LSC harbor enhanced expression of the Shh transcriptional activator, GLI2, and decreased expression of a transcriptional repressor, GLI3. Treatment of human blast crisis LSC engrafted RAG2−/−gc−/− mice with a selective Shh inhibitor, PF-04449913, reduced leukemic burden in a niche-dependent manner commensurate with GLI downregulation. Full transcriptome RNA sequencing performed on FACS-purified human progenitors from PF-04449913 treated blast crisis LSC engrafted mice demonstrated greater Shh gene splice isoform concordance with normal progenitors than vehicle treated controls. In addition, RNA sequencing revealed significantly decreased cell cycle regulatory genes expression and splice isoform analysis demonstrated reversion towards a normal splice isoform signature for many cell cycle regulatory genes. Moreover, cell cycle FACS analysis showed that selective Shh inhibition permitted dormant blast crisis LSC to enter the cell cycle while normal progenitor cell cycle status was unaffected. Finally, PF-04449913 synergized with BCR-ABL inhibition to reduce blast crisis LSC survival and self-renewal in concert with increased expression of Shh pathway regulators. Our findings suggest that selective Shh antagonism induces cycling of dormant human blast crisis LSC, rendering them susceptible to BCR-ABL inhibition, while sparing normal progenitors. Implementation of novel LSC splice isoform detection platforms to assess efficacy of Shh inhibitor-mediated sensitization to molecularly targeted therapy may inform dormant cancer stem cell elimination strategies that ultimately avert relapse. Disclosures: Levin: Pfizer Oncology: Employment; Pfizer Oncology: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 110, No. 3 ( 2007-08-01), p. 1064-1072
    Abstract: Although proinflammatory cytokines are key mediators of tissue damage during graft-versus-host disease (GVHD), IFNγ has previously been attributed with both protective and pathogenic effects. We have resolved this paradox by using wild-type (wt), IFNγ−/−, and IFNγR−/− mice as donors or recipients in well-described models of allogeneic stem cell transplantation (SCT). We show that donor-derived IFNγ augments acute GVHD via direct effects on (1) the donor T cell to promote T helper 1 (Th1) differentiation and (2) the gastrointestinal (GI) tract to augment inflammatory cytokine generation. However, these detrimental effects are overwhelmed by a protective role of IFNγ in preventing the development of idiopathic pneumonia syndrome (IPS). This is the result of direct effects on pulmonary parenchyma to prevent donor cell migration and expansion within the lung. Thus, IFNγ is the key cytokine differentially controlling the development of IPS and gastrointestinal GVHD after allogeneic SCT.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2735-2735
    Abstract: Abstract 2735 Leukemia stem cells (LSC) play a crucial role in the development and progression of chronic myeloid leukemia (CML). Although BCR-ABL targeted tyrosine kinase inhibitors (TKI), such as dasatinib, can eradicate the majority of CML cells, they frequently fail to eliminate the dormant, niche-resident LSC that are hypothesized to drive CML relapse. Cumulative evidence from CML cell lines and CD34+ primary patient cells suggests that increased expression of pro-survival BCL2 family members contributes to TKI resistance and CML progression. However there is a relative dearth of data on BCL2 family expression in primary CML LSC and on the role of these proteins in TKI resistance in selective niches. Full transcriptome RNA sequencing revealed that LSC switch from pro-apoptotic to pro-survival BCL2 family member splice isoform expression during progression from chronic phase to blast crisis CML. Using splice isoform-specific qRT-PCR, we identified overrepresentation of long (pro-survival) compared with short (pro-apoptotic) MCL1, BCLX, and BCL2 isoforms in blast crisis LSC compared with chronic phase and normal progenitors. Following intrahepatic transplantation of blast crisis LSC into neonatal RAG2−/−gc−/− mice, LSC engrafted in the marrow niche were quiescent, were dasatinib resistant and upregulated BCL2 expression. These data led us to speculate that inhibition of BCL2 in dasatinib-resistant LSC may sensitize LSC to TKI therapy. Treatment with a high-potency, novel pan-BCL2 family inhibitor, sabutoclax, in vitro led to a dose-dependent increase in apoptosis along with a decrease in the frequency of leukemic progenitors compared to vehicle treated controls. Normal human cord blood progenitor cells were less sensitive to sabutoclax treatment with IC50 approximately five times higher than that for blast crisis CML cells (210 nM versus 43 nM). Moreover, sabutoclax treatment did not inhibit cord blood colony formation or colony replating in vitro. Treatment of CML LSC-transplanted mice with sabutoclax led to a significant reduction in LSC burden in all hematopoietic organs analyzed. Sabutoclax treatment in vivo also sensitized surviving bone marrow blast crisis LSC to dasatinib treatment ex vivo. Importantly, there was no reduction in normal progenitor engraftment in bone marrow following sabutoclax treatment. These results demonstrate that marrow niche blast crisis CML LSC survival is driven by overexpression of multiple pro-survival BCL2 family isoforms rendering them susceptible to a novel pan, BCL2 antagonist, sabutoclax, at doses that spare normal hematopoietic progenitors. While BCL2 splice isform switching promotes LSC survival and TKI resistance, pan-BCL2 family member inhibition with sabutoclax eliminates LSC and may form the cornerstone of a clinical strategy to avert cancer progression and relapse. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 108, No. 7 ( 2006-10-01), p. 2485-2492
    Abstract: Host antigen-presenting cells (APCs) are known to be critical for the induction of graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT), but the relative contribution of specific APC subsets remains unclear. We have studied the role of host B cells in GVHD by using B-cell–deficient μMT mice as BMT recipients in a model of CD4-dependent GVHD to major histocompatibility complex antigens. We demonstrate that acute GVHD is initially augmented in μMT recipients relative to wild-type recipients (mortality: 85% vs 44%, P 〈 .01), and this is the result of an increase in donor T-cell proliferation, expansion, and inflammatory cytokine production early after BMT. Recipient B cells were depleted 28-fold at the time of BMT by total body irradiation (TBI) administered 24 hours earlier, and we demonstrate that TBI rapidly induces sustained interleukin-10 (IL-10) generation from B cells but not dendritic cells (DCs) or other cellular populations within the spleen. Finally, recipient mice in which B cells are unable to produce IL-10 due to homologous gene deletion develop more severe acute GVHD than recipient mice in which B cells are wild type. Thus, the induction of IL-10 in host B cells during conditioning attenuates experimental acute GVHD.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...