GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 125, No. 22 ( 2015-05-28), p. 3420-3431
    Abstract: Increased IL-15 expression in leukemic lymphoblasts is associated with activation of NK cells. The CNS may be an immunologic sanctuary protecting lymphoblasts from NK-cell activity.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 130, No. 5 ( 2017-08-03), p. 643-654
    Abstract: Xenografted ALL cells faithfully recapitulate CNS leukemia and are characterized by high expression of VEGF, mediating CNS entry of ALL cells. VEGF captured by bevacizumab in vivo specifically reduces CNS leukemia, providing a novel strategy to target CNS involvement in ALL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2634-2634
    Abstract: In acute lymphoblastic leukemia (ALL), central nervous system (CNS) directed therapy is required to achieve long-term remission and survival even in patients without detectable CNS disease, indicating subclinical CNS manifestation in many patients. Hence, prophylactic CNS therapy is indispensable but bears the risk of secondary neoplasms and neurocognitive deficits in ALL survivors. Therefore, a better understanding of mechanisms mediating CNS involvement in ALL are needed in order to identify potential targets for prophylactic and therapeutic intervention. In this study, we transplanted primary patient B cell precursor (BCP) ALL cells onto NOD/SCID mice and investigated engraftment of human leukemia cells in the recipient's peripheral blood (PB), bone marrow (BM), spleen (S), and meninges by flowcytometry staining for huCD19. Upon disease onset, we identified meningeal infiltration of human ALL cells together with leukemia engraftment in BM, S and PB in a subset of samples (CNSpos) in contrast to absent CNS involvement despite high leukemia cell infiltration of BM, S and PB in other recipients (CNSneg). CNSpos and CNSneg phenotypes were consistently observed in subsequent xenograft passages. In CNSpos animals meningeal leukemia infiltration was also detected by immunohistochemistry on brain sections and meningeal enhancement was detected by small animal magnetic resonance imaging in CNSpos recipients. We further characterized ALL cells isolated from meningeal and BM infiltrates by gene expression profiling and identified the gene coding for vascular endothelial growth factor A (VEGF) to be highly expressed in ALL cells isolated from the CNS as compared to BM derived cells. Differential expression of VEGF was validated by qPCR and confirmed in independent sample cohorts. Most interestingly, reported functions of VEGF include regulation of cellular growth, vascular permeability, and trans-endothelial cell migration, and elevated VEGF protein levels have previously been described in cerebrospinal fluid specimens collected from ALL and AML patients with CNS leukemia. VEGF signals through its receptors 1 or 2 (VEGFR1/2). On all primary ALL samples, only expression of VEGFR1 but not VEGFR2 was detected. We used the BCP-ALL cell line Nalm-6, which also expresses VEGF and VEGFR1 and mediates a clear CNSpos phenotype upon engraftment. However, cellular survival, proliferation, apoptosis, and metabolic activity were not affected, neither upon exposure to VEGF or the antagonizing VEGF antibody bavacizumab, nor by stable VEGF overexpression or knock-down, thus indicating absence of autocrine VEGF/VEGFR1 signaling. We further analyzed whether paracrine VEGF signaling through VEGFR2, which upon activation mediates endothelial cell permeability, is involved in trans-endothelial migration of ALL cells leading to leukemia infiltration of the CNS. Brain endothelial cells (bEND.3) incubated with VEGF showed increased phosphorylation of VEGFR2 downstream signaling molecules (Src, AKT), which indicates activated signaling mediating cellular permeability. Moreover, we modeled migration of ALL cells through brain endothelial cells in a transwell assay and observed significantly increased migration of Nalm-6 ALL cells through bEND.3 monolayers upon exposure to VEGF or upon overexpression of VEGF as compared to controls. Vice versa, significantly lower numbers of migrated leukemia cells were detected after incubation with bevacizumab or upon VEGF knock down indicating VEGF dependent trans-endothelial migration. Thus, we identified high expression of VEGF in CNS derived leukemia cells, absent autocrine signaling of VEGF on ALL cells and, most importantly, VEGF dependent trans-endothelial migration of ALL cells indicating VEGF as a possible mediator of CNS leukemia. Finally, we investigated the impact of VEGF on CNS leukemia manifestation in vivo. Recipient animals transplanted with 3 CNSpos primograft samples (4 experiments, one in repetition) were treated with bevacizumab or control. In all experiments, anti-VEGF treatment significantly reduced the leukemia burden exclusively in the CNS but not in BM, S, and PB compartments, indicating that transmigration of leukemia cells and CNS manifestation in ALL is mediated by VEGF. Thus, targeting of VEGF signaling may serve as a novel strategy to control CNS leukemia in patients. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 138, No. 20 ( 2021-11-18), p. 1953-1965
    Abstract: We previously identified an association of rapid engraftment of patient-derived leukemia cells transplanted into NOD/SCID mice with early relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In a search for the cellular and molecular profiles associated with this phenotype, we investigated the expression of microRNAs (miRNAs) in different engraftment phenotypes and patient outcomes. We found high expression of miR-497 and miR-195 (hereafter miR-497/195) in patient-derived xenograft samples with slow engraftment derived from patients with favorable outcome. In contrast, epigenetic repression and low expression of these miRNAs was observed in rapidly engrafting samples associated with early relapse. Overexpression of miR-497/195 in patient-derived leukemia cells suppressed in vivo growth of leukemia and prolonged recipient survival. Conversely, inhibition of miR-497/195 led to increased leukemia cell growth. Key cell cycle regulators were downregulated upon miR-497/195 overexpression, and we identified cyclin-dependent kinase 4 (CDK4)– and cyclin-D3 (CCND3)–mediated control of G1/S transition as a principal mechanism for the suppression of BCP-ALL progression by miR-497/195. The critical role for miR-497/195–mediated cell cycle regulation was underscored by finding (in an additional independent series of patient samples) that high expression of miR-497/195 together with a full sequence for CDKN2A and CDKN2B (CDKN2A/B) was associated with excellent outcome, whereas deletion of CDKN2A/B together with low expression of miR-497/195 was associated with clearly inferior relapse-free survival. These findings point to the cooperative loss of cell cycle regulators as a new prognostic factor indicating possible therapeutic targets for pediatric BCP-ALL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...