GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (16)
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1278-1278
    Abstract: Adaptive resistance of myeloma cells to proteasome inhibition is poorly understood. It is suggested to base on point mutations in PSMB5 and/or downmodulation of the activation state of the unfolded protein response (UPR) via reduced activity of its major regulatory axis IRE-1/XBP-1. We have generated subclones of the AMO-1 myeloma cell line resistant to bortezomib 〉 1000 nM (AMO-BTZ), or carfilzomib 〉 1000 nM (AMO-CFZ), that do or do not carry the PSMB5 A310G mutation in the β5 substrate pocket. We combine this model with a global quantitative proteomics approach, the analysis of the activation status of the IRE-1/XBP-1 pathway, and with an advanced set of proteasome activity-specific fluorescent affinity probes that allow direct, selective, simultaneous visualization of the activity of all six active β-subunits of the constitutive and the immunoproteasome. Our results demonstrate that the A310G mutation has a modest impact on β5c proteasome inhibition by bortezomib (increasing the IC50 from 25nM to 80 nM), and likewise by carfilzomib (IC50 increase from 10 nM to 50 nM). Strikingly, when AMO-CFZ or AMO-BTZ were exposed to the same functional level of proteasome inhibition ( 〉 90% inhibition of β5c/5i, 20% inhibition of β1/1i, β2/2i) that resulted in 70-90% cytotoxicity in AMO-1 cells, no cytotoxicity was observed in AMO-BTZ and AMO-CFZ cells. Likewise, AMO-BTZ and AMO-CFZ cells were resistant to the next generation proteasome inhibitors ixazomib, oprozomib and dalanzomib, irrespective of the presence or absence of the PSMB5 mutation. Analysis of the UPR and its major regulators on protein and mRNA levels revealed that all clones of AMO-BTZ and AMO-CFZ showed significantly lower expression of IRE-1 and its product, spliced XBP-1, compared to AMO-1 cells, in contrast to all other major regulators of the UPR (ATF6, PERK, elF2a). Proteasome inhibitor treatment induced phosphorylation of IRE-1 and the induction of sXBP1 similarly in AMO-1, AMO-BTZ and AMO-CFZ cells, however, the induction of downstream proteins of the UPR (ATF4, PDI) was exclusively found in AMO-1 cells. Mass spectrometry-based quantitative global proteomic analysis was performed to compare AMO-1 cells with AMO-BTZ and AMO-CFZ with a cut off of at least a 50% change in abundance of differentially expressed proteins in at least 2 out of triplicate experiments. This yielded 〉 3500 identified individual proteins in proteasome inhibitor adapted cells, of which 〉 600 were differentially expressed and subsequently subjected to a protein-protein interaction (PPI) search and a Gene Ontology (GO) analysis, resulting in an average of 30 GO terms for the overexpressed proteins and 10 for downregulated species in AMO-BTZ and AMO-CFZ. Manual grouping of GO into functionally related clusters resulted in 5-6 groups that were largely concordant between AMO-BTZ and AMO-CFZ. The clusters found overexpressed in AMO-BTZ and AMO-CFZ were proteins involved in protein catabolism, redox control and protein folding. Uniform downregulation was observed for protein clusters involved in transcription/translation, differentiation, apoptosis and structural/cytoskeletal functions. The quantitatively largest group of proteins with significantly altered expression levels in AMO-BTZ/AMO-CFZ vs. AMO-1 control cells consisted of proteins involved in metabolic regulation. This big cluster comprised close to 50 % of all polypeptides with significant quantitative changes, suggesting a key role for metabolic homeostasis. The quantitatively most significantly upregulated protein in both AMO-CFZ and AMO-BTZ was NADPH dehydrogenase, the most important reducing enzyme in eukaryotic cells (4-6 x upregulated). The top individual upregulated protein in AMO-CFZ was the p-glycoprotein 1 (Pgp, 12 x upregulated), while the transcription factor IKZF3 was among the top downregulated proteins in AMO-BTZ cells (0.2 x). Our data indicate that proteasome gene mutations are not required for proteasome inhibitor resistance of myeloma cells, that proteasome inhibitor adapted myeloma cells can compensate subtotal proteasome inhibition irrespective of the type of inhibitor used, and that they have undergone complex adaptive changes in particular in proteins that regulate metabolic functions. Thus we suggest that the metabolic machinery rather than the proteasome should be explored for drug targets in myeloma cells with acquired proteasome inhibitor resistance. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4466-4466
    Abstract: Background. EDO-S101 is a first-in-class alkylating, histone-deacetylase inhibitor (HDACi) fusion molecule with dual activity that is currently in Phase I. It structurally combines the strong DNA damaging effect of bendamustine with a fully functional pan-HDAC inhibitor, vorinostat. Bendamustine has substantial activity against B-cell malignancies; vorinostat sensitizes the same type of cancers against alkylators or proteasome inhibitors (PI). Bendamustine combined with the PI bortezomib (BTZ) is active against multiple myeloma (MM). Cytotoxicity of PI in MM relies on excess induction of proteotoxic stress and triggering of the unfolded protein response (UPR). Upon proteasome inhibition, HDACi synergize with PI by interfering with the a-tubulin-mediated transport of poly-ubiquitinated proteasome substrates to lysosomal destruction. Indeed, EDO-S101 has strong synergistic cytotoxicity with PI in vitro against hematological malignancies, including MM, mantle cell lymphoma and ABC type diffuse large B-cell lymphoma. The aim of this work is to characterize the molecular mechanism of action of the synergy of EDO-S101 with PI in comparison to its established structurally related drugs, bendamustine and vorinostat. Methods. The cytotoxic and molecular activity of EDO-S101 in combination with BTZ and other types of PI was assessed in vitro using the RPMI-8226 and several other MM cell lines. HDAC-inhibiting activity, accumulation of poly-ubiquitinated proteins and induction of ER stress, apoptotic signaling and autophagy induction were assessed by quantitative PCR and western blotting. Proteasome activity was measured with activity based probes (ABP). Apoptosis was assessed by AnnexinV/FITC staining with flow cytometry. Cell viability was evaluated by MTS assay. Results. EDO-S101 showed substantially stronger cytotoxicity in combination with PI than melphalan, bendamustine, cyclophosphamide or PI combined with equimolar vorinostat. EDO-S101 had higher HDACi-type of activity, compared to vorinostat, as demonstrated judged in particular by increased a-tubulin acetylation, providing a potential mechanistic basis for its superior synergy with PI. Consistent with this, EDO-S101 alone induced moderate cellular accumulation of poly-ubiquitinated proteins already in the absence of proteasome inhibition, which was potentiated when EDO-S101 was combined with BTZ. EDO-S101 induced activation of the UPR-regulators XBP1 and IRE1 known to control BTZ sensitivity of MM, in contrast to vorinostat or bendamustine alone. Co-treatment with BTZ and EDO-S101 or vorinostat resulted in highly synergistic triggering of the UPR (ATF4, CHOP, BIP). Interestingly, EDO-S101 in addition induced the pro-apoptotic machinery via upregulation of NOXA, downregulation of BCL2 and an increase of the BAX/BCL2 ratio, and also activated autophagy, as evidenced by upregulation of LC3A and LC3B. While this pro-apoptotic signaling of EDO-S101 was highly synergistic with BTZ-induced apoptotic signals, co-treatment with BTZ and vorinostat reduced apoptotic signaling compared to BTZ alone. EDO-S101 reduced c-Myc expression by 60%, while vorinostat had no effect on c-Myc levels. The combination BTZ+EDO-S101 decreased c-Myc levels by approx. 90%, while these levels remained unchanged during treatment with BTZ+vorinostat. Conclusion. EDO-S101 is a first-in-class, dual-mechanism, alkylator-HDAC-inhibitor fusion molecule that combines key structural features of bendamustine and vorinostat. The molecular mode of action of EDO-S101 differs from that of its structurally related drugs by a more effective interaction with a-tubulin, which may in part explain superior synergy with PI. Most importantly, EDO-S101 has a direct pro-apoptotic activity via downregulation of c-Myc and BCL2 while upregulating NOXA, features not observed with vorinostat. This results in highly synergistic signaling with the PI-induced pro-apoptotic effects. EDO-S101 is a promising advancement of bendamustine with molecular features clearly different from and superior to a combination of bendamustine with vorinostat. EDO-S101 should be explored in combination with proteasome inhibitors in particular in poor risk B cell neoplasms with c-Myc overexpression such as aggressive MM, Burkitt lymphoma or "double hit" aggressive B cell lymphoma. Disclosures Besse: Mundipharma-EDO: Other: travel support. Mehrling:Mundipharma-EDO: Employment. Driessen:Mundipharma-EDO: Honoraria, Membership on an entity's Board of Directors or advisory committees; celgene: Consultancy; janssen: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2956-2956
    Abstract: Abstract 2956 Introduction: The HIV protease inhibitor nelfinavir has anti-myeloma activity in mice; it is approved at the 1250 mg bid dose for oral treatment of HIV. We performed a phase I dose escalation trial of nelfinavir in combination with bortezomib in patients with advanced hematologic malignancies. Methods: During cycle 1 (28 days), trial treatment consisted of 1 week nelfinavir monotherapy, followed by nelfinavir in combination with standard dose bortezomib (1.3 mg/m2i.v. day 8, 11, 15, 18), while cycles 2 and 3 (21 days each) consisted of 2 weeks nelfinavir in combination with bortezomib (day 1, 4, 8, 11). Non-progressing patients could continue therapy for up to 4 additional cycles with the same regimen as cycles 2 and 3. Nelfinavir dose was escalated in a 3+3 design over 3 dose levels (1250, 1875, 2500 mg bid). Dose limiting toxicity (DLT), the primary endpoint, was grade 3–4 non-hematological toxicity (excluding grade 3 bilirubin/alanine aminotransferase (ALT) or hyperlipidemia reversible within 2 weeks) or severe hematologic toxicity unrelated to the underlying disease during cycle 1. Secondary endpoints included pharmacodynamic and pharmacokinetic assessments during cycle 1 at baseline, nelfinavir monotherapy and after application of nelfinavir and bortezomib in combination, as well as signals for activity. Results: Twelve evaluable patients were registered (median age 58 years; 8 male; performance status 0–1 in 10/12 patients); 8 had multiple myeloma, 2 leukemia (1 acute myeloid, 1 acute lymphoblastic) and 2 lymphoma (1 diffuse large B-cell lymphoma, 1 mantle-cell (MCL)). All myeloma patients failed both prior bortezomib and lenalidomide-containing therapy; 7/8 had progressed under prior bortezomib. One patient (2500 mg bid dose) experienced a transient grade 4 elevated ALT, categorized as DLT, which resolved within 2 weeks. The patient continued the same regimen off study without recurrent hepatic toxicity. No further DLTs occurred, thus nelfinavir 2500 mg bid was established to be safe in combination with standard dose bortezomib. One patient with highly aggressive lymphoma died from cerebral vein thrombosis; a myeloma patient experienced a non-fatal pulmonary embolism. Elevated ALT (2 patients) was the only additional non-hematological toxicity grade 3/4 observed in 〉 1 patient. Grade 3 febrile neutropenia and grade 4 thrombocytopenia were seen in 1 and 4 patients, respectively. Best treatment response was evaluated for 11 patients (1 not evaluable). Partial response was achieved in 3 patients (2 myeloma, 1 MCL) and stable disease for at least 2 cycles of therapy in 5 patients. Overall, 4/12 patients completed 〉 =3 cycles of treatment. Assessment of proteasome activity in peripheral blood mononuclear cells (PBMC) from treated patients after 1 week nelfinavir monotherapy revealed inhibition of total proteasome activity in vivo by nelfinavir compared to baseline (mean inhibition, as determined by specific, quantitative intracellular affinity labeling of active proteasome subunits: 14.9 %, 95% confidence interval (CI): 8.8–23.5%, p= 〈 0.001), including inhibition of the bortezomib-insensitive tryptic (β2-type) proteasome activity (mean inhibition: 17.7%, 95% CI: 8.0–27.4%, p=0.008). In addition, inhibition of pAKT, induction of the unfolded protein response and accumulation of polyubiquitinated protein in vivo was observed in PBMC after nelfinavir monotherapy. Mean intracellular proteasome inhibition after combination treatment with bortezomib and nelfinavir was 26.6 % (95% CI: 11.5–42%). Maximum nelfinavir plasma levels were observed at the 1875 mg bid dose level (Cmax mean 12.10 mM, trough mean 6.97 mM), matching the nelfinavir concentrations that mediate anti-myeloma activity in vitro. Conclusion: This is the first trial to report on the use of nelfinavir as an anti-neoplastic agent in patients with hematologic malignancies. It identifies nelfinavir as FDA approved, orally available drug with pan-proteasome inhibiting activity in vivo. Nelfinavir treament up to 2500 mg bid is safe as monotherapy and in combination with standard dose bortezomib. Bortezomib in combination with nelfinavir shows signals for clinical activity in individual myeloma patients that have failed bortezomib and lenalidomide-containing therapies. Nelfinavir warrants further clinical investigation in multiple myeloma, in particular in combination with proteasome inhibitors. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2249-2249
    Abstract: Background: EDO-S101 is a first-in-class alkylating histone-deacetylase inhibitor (HDACi) fusion molecule that combines the strong DNA damaging effect of bendamustine, with a fully functional pan-HDAC inhibitor, vorinostat. Bendamustine has substantial clinical activity against B-cell malignancies, lacks cross resistance with many other anticancer drugs, has superior antimyeloma activity compared to melphalan, and can safely be combined with proteasome inhibitors. The Histone deacetylase inhibitor (HDACi) vorinostat has a broad spectrum of epigenetic activities and sensitizes lymphoma and myeloma cells for a variety of cytotoxic drugs. Vorinostat in particular has a strong synergy with proteasome inhibitors, presumably due to the inhibition of HDAC6. HDAC6 allows polyubiquitinated substrate protein to bypass the inhibited proteasome towards degradation via the autophagy pathway. The EDO-S101 molecule was designed to create a very potent cytotoxic agent for systemic use upon exploiting the synergies of a bi-functional mode of action. Methods: The aim of the in vitro study was to compare the cytotoxicity of EDO-S101 against Multiple Myeloma (MM), leukemia and lymphoma cells with established alkylating agents and to investigate its cellular and molecular effects in combination with proteasome inhibitors. Results: The IC50 of EDO-S101 ranged between 5-13 μM in 8 myeloma cell lines and thus one order of magnitude lower than the IC50 for bendamustine (70 - 〉 200 μM). Myeloma cell lines with adaptive resistance against bortezomib or carfilzomib did not differ from non-adapted cells in their IC50 for EDO-S101. Likewise, the IC50 for 3 ABC type DLBCL cell lines ranged between 3-8 μM for EDO-S101, compared to bendamustine 〉 50 μM. EDO-S101 had significant synergistic cytotoxicity with the proteasome inhibitors bortezomib and carfilzomib across all cell types tested, in contrast to melphalan and bendamustine. In a panel of 6 MM cell lines, the combination of EDO-S101 yielded a mean combination index for synergistic cytotoxicity of 0.12 (± 0.06) and 0.08 (± 0.06) for bortezomib or carfilzomib combinations, respectively (with values 〈 0.8 indicating significant synergism), in contrast to bendamustine 1.35 (± 0.87) and 1.29 (± 0.86), and melphalan 1.09 (± 0.66) and 1.20 (± 1.44). Likewise, EDO-S101 showed synergistic cytotoxicity with bortezomib and carfilzomib against mantle cell lymphoma cells (mean CIs 0.6 and 0.2), in contrast to bendamustine (CIs 1.72, 1.22) and melphalan (CIs 1.16 and 1.17), as well as ABC type DLBCL (CIs 0.32 and 0.28 for EDO S-101, compared to 15 and 34 for bendamustine and 0.87 and 0.78 for melphalan). To dissect the molecular mechanism for the unique synergistic cytotoxicity of EDO-S101 with proteasome inhibition, which contrasted to the established alkylating drugs, we analysed proteasome activity, protein acetylation status, accumulation of polyubiquitinated proteins as well as regulatory and effector proteins of the unfolded protein response (UPR) in RPMI8226 myeloma cells by western blot. EDO-S101 induced strong protein and histone acetylation, confirming its HDACi-like activity. Interestingly, and in contrast to bendamustine, melphalan and vorinostat, EDO-S101 was a strong inducer of pIRE-1, the key activator protein of the UPR in MM cells. IRE1 activation and induction of the UPR have recently been shown to be the major determinants of proteasome inhibitor sensitivity in human MM. Conclusions: We conclude that EDO-S101, an alkylating HDAC inhibitor fusion molecule, displays bi-functional activity. Compared to bendamustine and melphalan, it has superior monoactivity in vitro against hematologic malignancies including MM, mantle cell lymphoma and ABC type DLBCL. Of particular interest is the strong synergy of EDO-S101 with proteasome inhibitors which also stands out in comparison to the established alkylating agents. The latter is associated with induction of pIRE1, the key regulator of the UPR by EDO- S101. Both, the superior monoactivity of EDO-S101 and its mechanism-based synergy with proteasome inhibitors warrant further development of the compound towards clinical testing. Disclosures Driessen: Mundipharma: Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2021
    In:  Blood Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1577-1577
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1577-1577
    Abstract: Background Proteasome inhibitors (PI) have emerged as a powerful, cell biology-based treatment option for multiple myeloma (MM) and build a central backbone for MM treatment with three proteasome-inhibiting drugs currently approved: bortezomib (BTZ), carfilzomib (CFZ) and ixazomib. However, despite the high anti-MM activity of PI, MM cells adapt to the selective pressure of PI treatment in most cases to date and most MM patients relapse during or after treatment with PI, develop PI-refractory disease and ultimately die. Therefore, understanding and overcoming PI resistance is a key challenge for MM therapy. Our previous in vitro studies on PI-resistant MM suggest that PI-adapted, MM cells show very distinct features of general metabolism and cell biology that differentiate them from PI-sensitive MM, derived from the same cell line. We hypothesize that this highly specialized and adapted nature of PI-resistant MM offers novel areas of vulnerability, that differ from the therapeutic targets in PI-sensitive MM. The aim of our study was to identify essential drug targets and pathways in PI-resistant MM using genome-wide functional screening with the CRISPR/Cas9 system that could serve as novel therapeutic targets in PI-resistant MM. Methods We used genome-wide CRISPR/Cas9-based loss-of-function screening with Brunello library in L363-BTZ and RPMI-8226-BTZ cells, adapted to grow in the presence of 90 nM BTZ. The overlapping bortezomib genetic sensitivity candidates were further validated in the set of BTZ-resistant cells (L363-BTZ, RPMI-8226-BTZ, MM1S-BTZ and AMO-BTZ) cells using shRNA silencing or single-gene specific knockout or genetic overexpression using CCK8 viability assay. Subsequent functional analysis of the highest ranking BTZ sensitivity candidates in BTZ-adapted cells included apoptosis and cell cycle analysis, qPCR and western blotting, SILAC, proteasome activity determination using activity-based probes and FRAP analysis. Results CRISPR/Cas9-screening identified two candidate genes for BTZ sensitivity, ECPAS (KIAA0368; Ecm29 Proteasome Adaptor and Scaffold protein) and PSME1 (an 11S regulator complex subunit), as consistent screening hits in two independent BTZ-adapted MM cell lines. Both genes are related to proteasome, but do not build the proteasome core particle and do not have a proteolytic activity. Specific knock-down or knock-out of ECPAS sensitized PI-naïve cells to BTZ and CFZ, while significantly more sensitizing BTZ-adapted cells to both PI. Likewise, overexpression of PSMF1, an inhibitor of 11S regulator complex, sensitized BTZ-resistant as well as sensitive cells to BTZ. ECPAS-depleted BTZ-adapted cells showed accumulation of poly-ubiquitinated proteasome substrate proteins, induction of the unfolded protein response, cell cycle arrest and induction of apoptosis, together with changes in protein synthesis after the treatment with 50 nM bortezomib, in contrast to BTZ-adapted control cells. FRAP analysis of cells with GFP-tagged PSMD6 revealed that the intracellular mobility of proteasomes in ECPAS-depleted cells was reduced. Importantly, proteasome activity determined by activity-based probes was not impaired in ECPAS-depleted cells. Conclusion In conclusion, BTZ-resistant MM cells uniquely show a high dependency on the proteasome adaptor and scaffold protein ECPAS, which has been shown to be involved in coupling of proteasome in different compartments and promotes proteasome dissociation under oxidative stress. Specifically in PI-resistant MM, ECPAS is important to ensure functional proteasome, is involved in controlling the intracellular mobility of proteasomes, likely to ensure high proteasome turnover. ECPAS therefore represents a novel candidate that may be targeted to specifically re-sensitize PI-resistant MM cells to proteasome inhibitor treatment. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2915-2915
    Abstract: Abstract 2915 Bortezomib is a reversible first-generation proteasome inhibitor that inhibits the β5 and to a lesser extent the β1 catalytic site of the proteasome. However, bortezomib does not inhibit the β2 catalytic proteasomal site at clinically relevant concentrations, and bortezomib-resistance is accompanied by upregulation of the β2 subunit, suggesting that increased β2 activity may compensate for the loss of β1/ β5 activity during bortezomib-treatment. The second generation proteasome inhibitor carfilzomib, due to the chemistry of its epoxyketone warhead, has a higher substrate specificity and functions as an irreversible proteasome inhibitor, but is still a β1/ β5 inhibitor that does not affect the β2 active site. We investigated the effect of β2-specific proteasome inhibition on myeloma and acute myeloid leukemia (AML) cells and tested the hypothesis that β2-selective proteasome inhibition may overcome bortezomib-resistance. To this end we have developed a set of epoxyketone- and vinylsulfone-based, cell permeable proteasome inhibitors of which we selected the compounds PR523A and PR671A for further testing in cell-based assays. PR671A is a peptide-vinylsulfone that selectively inhibits the proteasome's β2/ β2i subunit in an irreversible fashion in human cell lines and primary cells at low micromolar concentrations without inhibition of other protease species. PR523A is a β5-selective peptide-epoxyketone with otherwise similar properties. Treatment of myeloma and AML cell lines (AMO-1, U-266, HL-60, THP-1) with PR523A induced ER-stress mediated apoptosis, very similar to bortezomib. The combination of bortezomib with PR523A led to additive, but not synergistic induction of apoptosis, as expected. Selective β2 inhibition by PR671A resulted in the induction of ER stress and the accumulation of poly-ubiquitinated protein, however, this was not effectively translated into apoptotic cell death. This indicates that selective inhibition of the β2 proteasome subunit alone has only a poor cytotoxic effect on myeloma and AML cell lines, suggesting that the function of β2 is largely redundant and can be compensated when the remaining proteasome catalytic subunits (β1 and β5) remain active. However, when the β2 inhibitor PR671A was combined with agents that target the proteasome's β5 active site (PR523A) or the β5 and the β1 site (bortezomib), the combination of either inhibitor with the β2 inhibitor PR671A was highly synergistic for both activation of ER stress and the induction of apoptotic death. Importantly, the bortezomib-resistance in bortezomib-adapted myeloma and AML cell lines could be overcome by combining PR671A with either bortezomib or PR523A, while β2 inhibition by PR671A alone had no effect on the viability of bortezomib-adapted cells. We conclude that PR671A is a β2 selective proteasome inhibitor. Selective Inhibition of the proteasome's β2 subunit has little effect on viability or ER stress both in normal and bortezomib-resistant myeloma and leukemia cells, suggesting that the function of the β2 catalytic site is largely redundant. However, when β1/ β5 proteasome activity is inhibited by drugs like bortezomib or carfilzomib, proper function of the β2 proteasome active site is crucial for cell survival, also in bortezomib-resistant myeloma cells. The use of specific β2 inhibitors like PR671A in combination with β1/ β5 inhibitors like bortezomib or carfilzomib is therefore a promising strategy to overcome resistance against β1/ β5-selective proteasome inhibitors. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 617-617
    Abstract: Proteasomal proteolysis is based on the activity of six different catalytic proteasomal subunits (β1, β2, β5, β1i, β2i, β5i) as well as ubiquitin-mediated recruitment of cytosolic proteins to the proteasomal complex. The latter is regulated by a balance between ubiquitinating enzymes and a variety of ubiquitin-specific proteases (USP). Although proteasomal proteolysis has become a major therapeutic target, the individual activity profiles of proteasomal subunits and USP in primary human malignant cells are unknown. Recently, an activity-based, cell-permeable affinity probe has been developed, which allows to visualize the individual proteasomal subunit activity in living cells in a semiquantitative fashion (Berkers et al., Nature Methods, May 2005). Similarly, a ubiquitin-based synthetic probe (HAUbVS) allows to visualize a broad range of USP based on their activity in cellular lysates. We have used both types of probes to assess i) the differential activity of the proteasomal catalytic subunits in intact cells and ii) the activity profiles of a panel of USP in primary cells of human hematologic malignancies. Individual subunits of both the constitutive and the immuoproteasome were tagged by the probe in live cells in situ, resolved by 1D or 2D SDS-PAGE, and identified by mass spectrometry. Comparison of different cases of ALL and CLL revealed a remarkable variability in the relative activities of the β1/1i–, β2/2i–, and β5/5i–type of subunits, respectively, which contrasted with their stochiometrically constant relation of the respective polypeptides in the architecture of the proteasome. Of note, live primary myeloma cells lacked active β1/1i–type subunits and contained only extremely low amounts of β5/5i–type active subunits, while active β2/2i subunits were present in amounts comparable with primary leukaemia cells or monocytes. The variability in active proteasomal subunits contrasted with a relatively homogeneous distribution of the activity profiles of seven different USP that were targeted by the USP-specific probe. In particular, and in contrast to control cell lines, we failed to confirm the substantial upregulation of UCH-L1 in primary cells, which had been suggested to be a characteristic of the proteasomal machinery in malignant cells, based on studies using human cell lines. In addition, we here for the first time directly visualize the effect of bortezomib on individual proteasome subunits in primary human cells: although Bortezomib is reported to selectively target the β5 subunit, we here show that both the β1 and β1i subunits are also inhibited by the substance, the latter with even higher affinity (IC50 approx. 2.5 nM). In one case of ALL that lacked detectable active β5/5i subunits in intact cells, Bortezomib induced cytotoxic death at the concentration where β1/β1i activity was eliminated. In summary, our study for the first time visualizes the differential activity of proteasomal subunits in living primary human cells, demonstrates significant variability in their activity profiles in leukaemia and myeloma cells and suggests that differential proteasomal activity might contribute to the variable sensitivity of cancer cells towards proteasome inhibitors such as Bortezomib.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 4747-4747
    Abstract: Rationale: Overcoming proteasome inhibitor (PI) resistance is a challenge in multiple myeloma (MM) therapy since most MM patients ultimately develop PI resistance. Induction of excessive activation of the unfolded protein response (UPR) is the major mechanism of PI-induced cytotoxicity in MM. The UPR is a complex transcriptional response that balances biosynthesis, folding and proteasomal destruction of cellular protein. UPR inactivation results in PI resistance in vitro, and MM cells with low UPR activation accumulate and drive the relapse in PI-resistant MM patients. Pharmacologic activation of the UPR overcomes PI-resistance in preclinical models of MM and provides an option for clinical testing. The HIV protease inhibitor nelfinavir (NFV) has UPR-inducing activity via an unknown mechanism that may involve interference with regulatory proteases in the UPR and/or proteasome activity. NFV has single agent activity in MM and sensitizes MM and AML cells for PI treatment in vitro and in vivo. Methods: We performed a multicenter phase I dose escalation study to assess safety and recommended dose for phase II of NFV in combination with bortezomib (BTZ) in patients with advanced hematologic malignancies, and to detect signals for activity. NFV was given d 1-14 twice daily p.o. at the dose levels 1250 mg (DL0), 1875 mg (DL1) and 2500 mg (DL2), BTZ was dosed 1.3 mg/m2 d 1, 4, 8, 11 i.v. in 21 day cycles. The first treatment cycle was preceded by one week of NFV monotherapy for assessment of pharmacokinetic/pharmacodynamic parameters (NFV plasma concentrations, proteasome activity and expression of UPR-related proteins in peripheral blood mononuclear cells (PBMC)). Patients were treated for 3 cycles per protocol with the option to receive up to a total of 7 cycles. Results: 12 patients were treated in the dose escalation cohort (median age 58 years; 8 patients with MM, 1 each with ALL, AML, DLBCL, MCL) for an average of 2.6 cycles. All MM patients had received prior BTZ. DLT was determined in cycle 1 in which 93 % of planned dose was delivered. One DLT was observed (G4 ALT elevation at DL2 that spontaneously resolved). Toxicity was mostly mild, could be handled symptomatically, and did not lead to study drug discontinuation except for one case of thrombocytopenia. Diarrhoea G1-2 was the most frequent toxicity observed. Ten patients were evaluable for best response while on trial therapy after having received at least one full cycle. Of these, three patients achieved a PR (1 MCL, 2 MM), 4 remained in SD for at least 2 cycles (2 MM, 1 AML, 1 ALL), while 3 progressed (2 MM, 1 DLBCL). Peak NFV plasma concentrations during monotherapy were in the dose range putatively required for UPR activation, tended to be higher in patients treated at DL1, compared to DL2 (means 13.3 vs. 8.9 mM, p=0.08) and were significantly higher during NFV monotherapy than during combination therapy with BTZ (means 9.24 vs. 6.60 mM, p=0.04), suggesting induction of NFV clearance either by autoinduction, concomitant BTZ application, or both. Pharmacodynamic analysis revealed upregulation of proteins related to UPR-induced apoptosis by NFV monotherapy in PBMC (CHOP +56%, p=0.008; PARP +57%, p=0.04, n=10). Activity of the BTZ-insensitive proteasome b2 subunit in PBMC decreased (-16%, p=0.01) during NFV monotherapy, compared to baseline, as did the BTZ-sensitive b1/b5 subunit (-17%, p=0.001). To detect additional signals for activity, an extension cohort of 6 heavily pretreated MM patients that had shown BTZ-resistance during the past 12 months and were in addition lenalidomide-resistant was treated at the recommended dose (DL2). Three of these patients achieved a PR and 2 a MR, while 1 showed PD with a mean of 4.3 cycles administered. Overall, 12 MM patients could be evaluated for best response while on therapy with BTZ + NFV in this study, of which 5 achieved a paraprotein reduction of 〉 50% compared to baseline (figure 1). Conclusion: Nelfinavir 2500 mg p.o. twice daily induces UPR activation and proteasome inhibition. It can safely be combined with bortezomib (1.3 mg/m2 d 1, 4, 8, 11) to potentially increase bortezomib sensitivity of hematologic malignancies. The combination yields promising clinical activity signals in patients with bortezomib-resistant myeloma. Figure 1: Best paraprotein response, relative to baseline, of evaluable patients with relapsed-refractory myeloma treated with bortezomib + nelfinavir at any dose level for at least one full cycle. Figure 1:. Best paraprotein response, relative to baseline, of evaluable patients with relapsed-refractory myeloma treated with bortezomib + nelfinavir at any dose level for at least one full cycle. Disclosures Off Label Use: the presentation will include off label use of nelfinavir as investigational medicinal product (IMP). Hitz:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 2464-2464
    Abstract: Upregulation of alternative proteolytic pathways characterizes malignant cells that overcome proteasome inhibition in vitro. The proteasome inhibitor Bortezomib (Velcade®), which selectively targets only one of the three active subunits of the proteasome, has shown limited activity in AML. Ritonavir (Norvir®) is an aspartate protease inhibitor used in intensive HIV-therapy, where therapeutic levels of 5–20μM are reached with an oral dose of 1200 mg/d. A cytotoxic effect of Ritonavir against malignant cells due to proteasome inhibition has been suggested (Gaedicke et al., Cancer Research 62, December 1, 2002). We have here tested the effect of Ritonavir on AML cells, both as single agent and in combination with Bortezomib. Ritonavir induced cytotoxic death in AML cell lines and primary AML blasts with an IC50 of 30–40 μM in vitro. The combination of Ritonavir and Bortezomib was synergistic in vitro, i.e. subtoxic concentrations of Ritonavir at 10 μM combined with subtoxic Bortezomib 5–10 nM induced robust cytotoxicity in AML cell lines and freshly isolated primary AML blasts. Using a novel chemical probe that for the first time allows to visualize the individual activity of proteasomal subunits in intact AML blasts, we show that Velcade selectively abrogates β5 proteasomal activity at 20 nM in AML cells, as expected. Ritonavir, by contrast, had no effect on active proteasomal subunits up to 50 μM. Thus, the synergistic effect of Ritonavir with Bortezomib on AML cells is not due to inhibition of the same proteasomal target by both drugs, but more likely mediated by blocking alternative proteolytic pathways. One individual patient aged 72 years with an early relaps of AML was treated with Ritonavir 400–600 mg/d p.o.. During treatment, the absolute leukocyte count dropped from 24000/μl to 8000/μl while the ANC raised from 185/μl to 1530/μl. Ritonavir was withdrawn due to diarrhoea and abdominal cramps, leading to a sharp increase in peripheral blood blasts and leukocytes. Retreatment with Ritonavir at a reduced dose of 200 mg/d combined with Velcade 1mg/sqm was tolerated and stabilized leukocyte counts for a short period of time. We conclude that Ritonavir has activity against chemotherapy-refractory AML in vitro and in vivo. The combination of Velcade and Ritonavir might allow to synergistically target the proteolytic machinery of AML blasts with tolerable toxicity.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 142, No. Supplement 1 ( 2023-11-02), p. 4663-4663
    Abstract: Background: The treatment of multiple myeloma (MM) has advanced rapidly with the discovery of proteasome inhibitors (PIs) bortezomib (BTZ) and carfilzomib (CFZ). PIs disrupt the equilibrium between production and disposal of excess and/or misfolded proteins in MM cells, leading to apoptosis. However, despite this success, essentially all patients with MM eventually develop resistance to PIs. Therefore, identifying strategies to overcome PIs resistance is clinically important. ALK inhibitors exhibit anti-MM activity ex vivo. Previously, the ALK inhibitor ceritinib has been shown to inhibit IGF1R/InsR signaling. Signaling through the IGF1/IGF1R axis contributes to acquired resistance to BTZ, and PI activity is reduced in the presence of IGF1, suggesting that IGF1R inhibitors may enhance the cytotoxic effect of PIs. To date, IGF1R/InsR inhibitors have not been successful as single agents in clinical trials and no formally approved drugs are available. Importantly, the drug repurposing approach offers a promising strategy for drug development, particularly for MM. Therefore, we aimed to identify i) whether ALK inhibitors are cytotoxic in MM by targeting the IGF1R/InsR pathway, and ii) whether they can be combined with PIs to overcome PI resistance in vitro and in vivo. Methods: A set of PI-naïve and PI-resistant cells was used in this study. The cytotoxicity of drugs was determined by CCK8 assay in cell lines and by CellTiter-Glo assay in primary cells. Genome-wide CRISPR/Cas9-based loss-of-function screening using the Brunello library was performed in the AMO-1 cell line to identify the mechanism of action of ceritinib. Kinase inhibitor selectivity data were retrieved from ChEMBL, v30. Western blotting was performed to assess the levels of total and phosphorylated proteins. RNA sequencing was used to determine the number of transcripts in PI-sensitive and PI-resistant cells, and RNA-seq data from patients included in the CoMMpass study were analyzed. Unbiased LC-MS/MS was performed to determine the effects of ceritinib and carfilzomib on intracellular metabolites. An in vivo mouse model based on orthotopic injection of AMO-BTZ cells into the femur of NSG mice was used to determine the effect of the drug combination in vivo. Results: Initially, seven ALK inhibitors were tested in PI-naïve and PI-adapted MM cell lines. Based on IC 50 values, the most effective ALK inhibitors to induce cytotoxicity in MM were ceritinib & gt; brigatinib & gt; entrectinib. The combination of ceritinib, brigatinib, and entrectinib showed synergistic cytotoxicity with PI BTZ and CFZ and overcame PI-resistance in four different sets of PI-adapted cells. The strongest synergistic cytotoxicity was observed between ceritinib and CFZ in CFZ-adapted cells. CRISPR/Cas9-screening identified genes involved in the negative regulation of mTORC signaling (DDIT4, NPRL2/3, TSC1/2) and transcription factor FOXO1 as the major resistance candidates to ceritinib. Subsequently, ceritinib treatment significantly inhibited mTORC signaling and impaired purine-pyrimidine and amino acid production pathways, suggesting a metabolic and proliferation shut-down and amino acid starvation due to targeting of the upstream receptor tyrosine kinases (RTK), which are essential for cell viability and thus not identified by CRISPR screening. Further search in the ChemBL database identified InsR and IGF1R, as RTK that was potently inhibited by ceritinib. PI-naïve and PI-resistant cell lines as well as MM patients were negative for ALK, but positive for InsR and IGF1R expression. Accordingly, co-treatment of PI-resistant cells with a combination of InsR/IGF1R inhibitors and CFZ induced strong synergistic cytotoxicity, resembling the synergistic cytotoxicity observed for ceritinib and CFZ, whereas InsR/IGF1R inhibitors did not show any synergistic cytotoxicity with ceritinib, suggesting targeting the same pathway. Importantly, the combination of ceritinib and CFZ was superior to CFZ in an orthotopic mouse model bearing PI-resistant MM cells and showed strong synergistic cytotoxicity in primary cells from MM patients progressing under or after PI-containing therapy. Conclusion: Ceritinib, an FDA-approved drug, overcomes PI resistance in MM by targeting InsR/IGF1R signaling, which is essential for PI resistance in MM. Therefore, ceritinib represents a promising, potential option for the treatment of PI-resistant MM.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...