GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 4747-4747
    Abstract: Rationale: Overcoming proteasome inhibitor (PI) resistance is a challenge in multiple myeloma (MM) therapy since most MM patients ultimately develop PI resistance. Induction of excessive activation of the unfolded protein response (UPR) is the major mechanism of PI-induced cytotoxicity in MM. The UPR is a complex transcriptional response that balances biosynthesis, folding and proteasomal destruction of cellular protein. UPR inactivation results in PI resistance in vitro, and MM cells with low UPR activation accumulate and drive the relapse in PI-resistant MM patients. Pharmacologic activation of the UPR overcomes PI-resistance in preclinical models of MM and provides an option for clinical testing. The HIV protease inhibitor nelfinavir (NFV) has UPR-inducing activity via an unknown mechanism that may involve interference with regulatory proteases in the UPR and/or proteasome activity. NFV has single agent activity in MM and sensitizes MM and AML cells for PI treatment in vitro and in vivo. Methods: We performed a multicenter phase I dose escalation study to assess safety and recommended dose for phase II of NFV in combination with bortezomib (BTZ) in patients with advanced hematologic malignancies, and to detect signals for activity. NFV was given d 1-14 twice daily p.o. at the dose levels 1250 mg (DL0), 1875 mg (DL1) and 2500 mg (DL2), BTZ was dosed 1.3 mg/m2 d 1, 4, 8, 11 i.v. in 21 day cycles. The first treatment cycle was preceded by one week of NFV monotherapy for assessment of pharmacokinetic/pharmacodynamic parameters (NFV plasma concentrations, proteasome activity and expression of UPR-related proteins in peripheral blood mononuclear cells (PBMC)). Patients were treated for 3 cycles per protocol with the option to receive up to a total of 7 cycles. Results: 12 patients were treated in the dose escalation cohort (median age 58 years; 8 patients with MM, 1 each with ALL, AML, DLBCL, MCL) for an average of 2.6 cycles. All MM patients had received prior BTZ. DLT was determined in cycle 1 in which 93 % of planned dose was delivered. One DLT was observed (G4 ALT elevation at DL2 that spontaneously resolved). Toxicity was mostly mild, could be handled symptomatically, and did not lead to study drug discontinuation except for one case of thrombocytopenia. Diarrhoea G1-2 was the most frequent toxicity observed. Ten patients were evaluable for best response while on trial therapy after having received at least one full cycle. Of these, three patients achieved a PR (1 MCL, 2 MM), 4 remained in SD for at least 2 cycles (2 MM, 1 AML, 1 ALL), while 3 progressed (2 MM, 1 DLBCL). Peak NFV plasma concentrations during monotherapy were in the dose range putatively required for UPR activation, tended to be higher in patients treated at DL1, compared to DL2 (means 13.3 vs. 8.9 mM, p=0.08) and were significantly higher during NFV monotherapy than during combination therapy with BTZ (means 9.24 vs. 6.60 mM, p=0.04), suggesting induction of NFV clearance either by autoinduction, concomitant BTZ application, or both. Pharmacodynamic analysis revealed upregulation of proteins related to UPR-induced apoptosis by NFV monotherapy in PBMC (CHOP +56%, p=0.008; PARP +57%, p=0.04, n=10). Activity of the BTZ-insensitive proteasome b2 subunit in PBMC decreased (-16%, p=0.01) during NFV monotherapy, compared to baseline, as did the BTZ-sensitive b1/b5 subunit (-17%, p=0.001). To detect additional signals for activity, an extension cohort of 6 heavily pretreated MM patients that had shown BTZ-resistance during the past 12 months and were in addition lenalidomide-resistant was treated at the recommended dose (DL2). Three of these patients achieved a PR and 2 a MR, while 1 showed PD with a mean of 4.3 cycles administered. Overall, 12 MM patients could be evaluated for best response while on therapy with BTZ + NFV in this study, of which 5 achieved a paraprotein reduction of 〉 50% compared to baseline (figure 1). Conclusion: Nelfinavir 2500 mg p.o. twice daily induces UPR activation and proteasome inhibition. It can safely be combined with bortezomib (1.3 mg/m2 d 1, 4, 8, 11) to potentially increase bortezomib sensitivity of hematologic malignancies. The combination yields promising clinical activity signals in patients with bortezomib-resistant myeloma. Figure 1: Best paraprotein response, relative to baseline, of evaluable patients with relapsed-refractory myeloma treated with bortezomib + nelfinavir at any dose level for at least one full cycle. Figure 1:. Best paraprotein response, relative to baseline, of evaluable patients with relapsed-refractory myeloma treated with bortezomib + nelfinavir at any dose level for at least one full cycle. Disclosures Off Label Use: the presentation will include off label use of nelfinavir as investigational medicinal product (IMP). Hitz:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1277-1277
    Abstract: Introduction Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by clonal expansion of immature myeloid progenitor cells in the bone marrow (BM). Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of AML cases, with Internal Tandem Duplications (ITD) being the most common type of mutation. Several FLT3 specific inhibitors (TKI) have been developed such as quizartinib, crenolanib and midostaurin (recently approved for clinical use). Nevertheless FLT3-ITD is associated with unfavorable prognosis and patients develop drug resistance with the underlying mechanisms remaining largely unexplained. Recently, changes within the actin cytoskeleton were associated with drug resistance development in various cancers. FLT3-ITD mutations are associated with RAC1 activation. RAC1 belongs to the family of RHO GTPases and enhances the actin polymerization by inducing the expression of N-WASP or WAVE2 and ARP2/3 complex. Therefore, we investigated actin cytoskeleton rearrangements through RAC1 activation as a potential mechanism contributing to Midostaurin resistance in AML. Material and methods First, we developed two Midostaurin resistant AML cell lines (MID-RES, MV4-11 and MOLM-13). Single cell measurements of Cell Stiffnes, cell adhesion forces between tumor and HS5 stroma cells and Actin filaments were performed by Atomic Force Microscopy (FluidFM®) and SIM microscopy, respectively. RAC1 activation was measured by RAC1 activation kit provided by Cytoskeleton. FLT3 surface and intracellular expression was measured by Flow cytometry and western blot, respectively. Cell death was analyzed by Annexin/PI staining in flow cytometry. Results The MID-RES cell lines MV4-11/MOLM-13 showed higher FLT3 surface and intracellular expression compared to their MID sensitive parental cells. In line with our expectations, we observed RAC1 activation, as well as an up-regulation of actin polymerization positive regulators such as N-WASP, WAVE2, PFN1 and ARP2/3 complex and the inhibition of actin polymerization negative regulator P-ser3 CFL1 in MID-RES cells. FLT3 receptor knock down by siRNAs reversed the MID resistance and reduced RAC1 activation and actin polymerization inducers expression. Likewise, bioinformatic analysis from publicly available microarray expression data (E-MTAB-3444), confirmed positive correlation between actin polymerization inducers and FLT3 signaling expression in 178 FLT3-ITD (r=0,67) and 461 FLT3 WT(r= 0,57) de novoAML patients. RAC1 induced Actin polymerization positively correlates with actin filaments growth and cell stiffness, which was observed in our MID-RES cells, higher load of actin filaments and increased cell stiffness. The combination between RAC1 specific inhibitor, EHT1864 and Midostaurin synergistically induces cell death in MID-RES cells by arresting cell cycle in G0/G1 phase and activating apoptosis. Beside, this combination reduced the adhesion forces to stroma cells, decreased the expression of PFN1/N-WASP/ARP2 and consequently reduced drastically the number of actin filaments and cell stiffness in MID-RES cells. EHT1864 and Midostaurin (alone and in combination) were not toxic in PBMCs obtained from healthy donors. Interestingly, this combination increase 〉 45 % cell death in cells obtained from refractory FLT3-mutated AML patient (this patient was relapsed (≥ 50% residual blasts in the bone marrow)under Chemotherapy+Midostaurin combination).The specific knock down of PFN1/N-WASP/ARP2 with siRNAs equally reversed the resistance to Midostaurin. Of note, RAC1 regulates the anti-apoptotic BCL2. Indeed, EHT1864 in combination with Midostaurin reduced anti-apoptotic family BCL2/MCL1 expression and increases the pro-apoptotic proteins BAX/PUMA. As expected, our MID-RES cells showed higher sensitivity to BCL2 inhibitor Venetoclax, than their parental cells. The combinations EHT1864+venetoclax, venetoclax+midostaurin and venetoclax+Midostaurin+EHT1864 synergistically induced cell death in MID-RES cells. Conclusion Actin polymerization inducers N-WASP, ARP2/3 complex and PFN1 may provide a valuable approach to overcome Midostaurin resistance in AML. Our data further suggest that the addition of BCL2 inhibition through EHT1864 and venetoclax could represent an interesting strategy to potentiate the activity of Midostaurin in FLT3 mutated AML. Disclosures Duell: Regeneron Pharmaceuticals, Inc.: Research Funding. Rosenwald:MorphoSys: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood Advances, American Society of Hematology, Vol. 7, No. 13 ( 2023-07-11), p. 2994-3004
    Abstract: Immunogenetic association studies may give rise to new hypotheses on the immune surveillance of cancer. We hypothesized that certain combinations of killer immunoglobulin-like receptor (KIR) and HLA genotypes may enhance natural killer (NK) cell immunity against nascent acute myeloid leukemia (AML) and, thereby, lead to a skewed genotype distribution among patients. For this purpose, we analyzed KIR and HLA genotypes of 1767 German patients with AML and compared the results with that of the data of 51 890 German volunteers who had registered with German bone marrow donor file (DKMS). Patient samples were retrieved from the Collaborative Biobank and the biorepository of the Study Alliance Leukemia. All samples were genotyped with high-resolution amplicon-based next-generation sequencing. Because of the large number of controls, this study was very sensitive to detect the impact of KIR genotype. Knowledge on KIRs and their cognate HLA ligands allowed for testing of several hypotheses of NK cell–mediated endogenous leukemia surveillance. We did not find significant differences between the 2 cohorts in regard to the presence or absence of single KIR genes. When grouped based on telomeric or centromeric gene content, the major haplotypes A/A, A/B, and B/B were equally distributed among patients and control subjects. Using information on KIRs and their HLA ligands, we further tested receptor-ligand models and summation models without revealing markedly significant differences between patients and controls, albeit we observed a trend pointing at a minor protective effect of a low number of inhibitory KIR/KIR-ligand pairs. The results suggest that the KIR/KIR-ligand genotype has no effect on the susceptibility for the development of de novo AML.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4466-4466
    Abstract: Background. EDO-S101 is a first-in-class alkylating, histone-deacetylase inhibitor (HDACi) fusion molecule with dual activity that is currently in Phase I. It structurally combines the strong DNA damaging effect of bendamustine with a fully functional pan-HDAC inhibitor, vorinostat. Bendamustine has substantial activity against B-cell malignancies; vorinostat sensitizes the same type of cancers against alkylators or proteasome inhibitors (PI). Bendamustine combined with the PI bortezomib (BTZ) is active against multiple myeloma (MM). Cytotoxicity of PI in MM relies on excess induction of proteotoxic stress and triggering of the unfolded protein response (UPR). Upon proteasome inhibition, HDACi synergize with PI by interfering with the a-tubulin-mediated transport of poly-ubiquitinated proteasome substrates to lysosomal destruction. Indeed, EDO-S101 has strong synergistic cytotoxicity with PI in vitro against hematological malignancies, including MM, mantle cell lymphoma and ABC type diffuse large B-cell lymphoma. The aim of this work is to characterize the molecular mechanism of action of the synergy of EDO-S101 with PI in comparison to its established structurally related drugs, bendamustine and vorinostat. Methods. The cytotoxic and molecular activity of EDO-S101 in combination with BTZ and other types of PI was assessed in vitro using the RPMI-8226 and several other MM cell lines. HDAC-inhibiting activity, accumulation of poly-ubiquitinated proteins and induction of ER stress, apoptotic signaling and autophagy induction were assessed by quantitative PCR and western blotting. Proteasome activity was measured with activity based probes (ABP). Apoptosis was assessed by AnnexinV/FITC staining with flow cytometry. Cell viability was evaluated by MTS assay. Results. EDO-S101 showed substantially stronger cytotoxicity in combination with PI than melphalan, bendamustine, cyclophosphamide or PI combined with equimolar vorinostat. EDO-S101 had higher HDACi-type of activity, compared to vorinostat, as demonstrated judged in particular by increased a-tubulin acetylation, providing a potential mechanistic basis for its superior synergy with PI. Consistent with this, EDO-S101 alone induced moderate cellular accumulation of poly-ubiquitinated proteins already in the absence of proteasome inhibition, which was potentiated when EDO-S101 was combined with BTZ. EDO-S101 induced activation of the UPR-regulators XBP1 and IRE1 known to control BTZ sensitivity of MM, in contrast to vorinostat or bendamustine alone. Co-treatment with BTZ and EDO-S101 or vorinostat resulted in highly synergistic triggering of the UPR (ATF4, CHOP, BIP). Interestingly, EDO-S101 in addition induced the pro-apoptotic machinery via upregulation of NOXA, downregulation of BCL2 and an increase of the BAX/BCL2 ratio, and also activated autophagy, as evidenced by upregulation of LC3A and LC3B. While this pro-apoptotic signaling of EDO-S101 was highly synergistic with BTZ-induced apoptotic signals, co-treatment with BTZ and vorinostat reduced apoptotic signaling compared to BTZ alone. EDO-S101 reduced c-Myc expression by 60%, while vorinostat had no effect on c-Myc levels. The combination BTZ+EDO-S101 decreased c-Myc levels by approx. 90%, while these levels remained unchanged during treatment with BTZ+vorinostat. Conclusion. EDO-S101 is a first-in-class, dual-mechanism, alkylator-HDAC-inhibitor fusion molecule that combines key structural features of bendamustine and vorinostat. The molecular mode of action of EDO-S101 differs from that of its structurally related drugs by a more effective interaction with a-tubulin, which may in part explain superior synergy with PI. Most importantly, EDO-S101 has a direct pro-apoptotic activity via downregulation of c-Myc and BCL2 while upregulating NOXA, features not observed with vorinostat. This results in highly synergistic signaling with the PI-induced pro-apoptotic effects. EDO-S101 is a promising advancement of bendamustine with molecular features clearly different from and superior to a combination of bendamustine with vorinostat. EDO-S101 should be explored in combination with proteasome inhibitors in particular in poor risk B cell neoplasms with c-Myc overexpression such as aggressive MM, Burkitt lymphoma or "double hit" aggressive B cell lymphoma. Disclosures Besse: Mundipharma-EDO: Other: travel support. Mehrling:Mundipharma-EDO: Employment. Driessen:Mundipharma-EDO: Honoraria, Membership on an entity's Board of Directors or advisory committees; celgene: Consultancy; janssen: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1278-1278
    Abstract: Adaptive resistance of myeloma cells to proteasome inhibition is poorly understood. It is suggested to base on point mutations in PSMB5 and/or downmodulation of the activation state of the unfolded protein response (UPR) via reduced activity of its major regulatory axis IRE-1/XBP-1. We have generated subclones of the AMO-1 myeloma cell line resistant to bortezomib 〉 1000 nM (AMO-BTZ), or carfilzomib 〉 1000 nM (AMO-CFZ), that do or do not carry the PSMB5 A310G mutation in the β5 substrate pocket. We combine this model with a global quantitative proteomics approach, the analysis of the activation status of the IRE-1/XBP-1 pathway, and with an advanced set of proteasome activity-specific fluorescent affinity probes that allow direct, selective, simultaneous visualization of the activity of all six active β-subunits of the constitutive and the immunoproteasome. Our results demonstrate that the A310G mutation has a modest impact on β5c proteasome inhibition by bortezomib (increasing the IC50 from 25nM to 80 nM), and likewise by carfilzomib (IC50 increase from 10 nM to 50 nM). Strikingly, when AMO-CFZ or AMO-BTZ were exposed to the same functional level of proteasome inhibition ( 〉 90% inhibition of β5c/5i, 20% inhibition of β1/1i, β2/2i) that resulted in 70-90% cytotoxicity in AMO-1 cells, no cytotoxicity was observed in AMO-BTZ and AMO-CFZ cells. Likewise, AMO-BTZ and AMO-CFZ cells were resistant to the next generation proteasome inhibitors ixazomib, oprozomib and dalanzomib, irrespective of the presence or absence of the PSMB5 mutation. Analysis of the UPR and its major regulators on protein and mRNA levels revealed that all clones of AMO-BTZ and AMO-CFZ showed significantly lower expression of IRE-1 and its product, spliced XBP-1, compared to AMO-1 cells, in contrast to all other major regulators of the UPR (ATF6, PERK, elF2a). Proteasome inhibitor treatment induced phosphorylation of IRE-1 and the induction of sXBP1 similarly in AMO-1, AMO-BTZ and AMO-CFZ cells, however, the induction of downstream proteins of the UPR (ATF4, PDI) was exclusively found in AMO-1 cells. Mass spectrometry-based quantitative global proteomic analysis was performed to compare AMO-1 cells with AMO-BTZ and AMO-CFZ with a cut off of at least a 50% change in abundance of differentially expressed proteins in at least 2 out of triplicate experiments. This yielded 〉 3500 identified individual proteins in proteasome inhibitor adapted cells, of which 〉 600 were differentially expressed and subsequently subjected to a protein-protein interaction (PPI) search and a Gene Ontology (GO) analysis, resulting in an average of 30 GO terms for the overexpressed proteins and 10 for downregulated species in AMO-BTZ and AMO-CFZ. Manual grouping of GO into functionally related clusters resulted in 5-6 groups that were largely concordant between AMO-BTZ and AMO-CFZ. The clusters found overexpressed in AMO-BTZ and AMO-CFZ were proteins involved in protein catabolism, redox control and protein folding. Uniform downregulation was observed for protein clusters involved in transcription/translation, differentiation, apoptosis and structural/cytoskeletal functions. The quantitatively largest group of proteins with significantly altered expression levels in AMO-BTZ/AMO-CFZ vs. AMO-1 control cells consisted of proteins involved in metabolic regulation. This big cluster comprised close to 50 % of all polypeptides with significant quantitative changes, suggesting a key role for metabolic homeostasis. The quantitatively most significantly upregulated protein in both AMO-CFZ and AMO-BTZ was NADPH dehydrogenase, the most important reducing enzyme in eukaryotic cells (4-6 x upregulated). The top individual upregulated protein in AMO-CFZ was the p-glycoprotein 1 (Pgp, 12 x upregulated), while the transcription factor IKZF3 was among the top downregulated proteins in AMO-BTZ cells (0.2 x). Our data indicate that proteasome gene mutations are not required for proteasome inhibitor resistance of myeloma cells, that proteasome inhibitor adapted myeloma cells can compensate subtotal proteasome inhibition irrespective of the type of inhibitor used, and that they have undergone complex adaptive changes in particular in proteins that regulate metabolic functions. Thus we suggest that the metabolic machinery rather than the proteasome should be explored for drug targets in myeloma cells with acquired proteasome inhibitor resistance. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3635-3635
    Abstract: Beta-thalassemia is a hereditary blood disorder characterized by reduced or absent synthesis of the beta-globin chain, one of the major components of adult hemoglobin (Hb). The unbalanced synthesis of globin chains leads to a relative excess of alpha-globin and heme, resulting in hemichrome-induced cellular damage in bone marrow erythroblasts and circulating erythrocytes. This, in turn, contributes to ineffective erythropoiesis, hemolysis and reduced red blood cell (RBC) survival, hallmarks of beta-thalassemia. We have previously reported that reduction in cellular heme synthesis by bitopertin, an oral, reversible, potent and selective glycine transporter 1 (GlyT1) inhibitor, positively impacts the disease pathology in a beta-thalassemia mouse model. It was hypothesized that reduced heme synthesis down-regulates globin production and as such diminishes the alpha-chain excess, driving the observed improvements in Hb, hemolysis and RBC survival in beta-thalassemia mice. In study BP39642 (NCT03271541), a multicenter, single arm, proof-of-mechanism study, we investigated the safety, tolerability, efficacy, pharmacokinetics (PK) and pharmacodynamics (PD) of multiple oral doses of bitopertin in adult patients with non-transfusion-dependent (NTD) beta-thalassemia. Participants underwent a 6-week dose-escalation period followed by up to 10 weeks of treatment at the attained target dose. Tolerability was acceptable in NTD beta-thalassemia patients. Adverse events observed were in line with expectations from previous trials, with transient but repetitive headache and dizziness being the most prominent events. The PK characteristics of bitopertin were consistent with healthy volunteers and non-thalassemic patients. PD data from 8 patients treated for 8 week showed that Hb levels, the primary efficacy outcome measure in this study, decreased from a mean value of 8.5 g/dL at baseline to 8.1 g/dL at week 9 (-5.2%). The mean corpuscular hemoglobin (MCH) content of erythrocytes and reticulocytes decreased by 2 pg (-9.3%) and 1.8 pg (-7.8%), respectively. Absolute counts of reticulocytes remained largely unchanged over the treatment period (+1.4%), while the total number of circulating RBCs increased from 4.3 x10E12/L to 4.5 x10E12/L (+6%). Based on these results, we concluded that treatment with bitopertin in NTD beta-thalassemia patients results in an expected inhibition of heme biosynthesis. Contrary to the observations in beta-thalassemia mice this did not lead to an improved disease phenotype in patients. We postulate that the negative effects of bitopertin on Hb synthesis were not sufficiently compensated by the observed increase in RBC count. We will present and discuss data that led to an early termination of the study and the implications for future research in this field. Disclosures Taher: Ionis Pharmaceuticals: Consultancy; Celgene Corp.: Research Funding; La Jolla Pharmaceutical: Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Protagonist Therapeutics: Consultancy. Viprakasit:F. Hoffmann-La Roche Ltd: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Protagonist Therapeutics: Consultancy, Research Funding; Agios: Consultancy, Research Funding. Cappellini:Sanofi/Genzyme: Membership on an entity's Board of Directors or advisory committees; Vifor: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria. Kraus:F. Hoffmann-La Roche Ltd: Employment. Cech:F.Hoffmann-La Roche Ltd: Employment. Dietmar:F. Hoffmann-La Roche Ltd: Employment. Winter:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Mazer:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Nave:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Dukart:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Schaedeli Stark:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Koerner:F. Hoffmann-La Roche Ltd: Employment. Khwaja:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Hermosilla:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2249-2249
    Abstract: Background: EDO-S101 is a first-in-class alkylating histone-deacetylase inhibitor (HDACi) fusion molecule that combines the strong DNA damaging effect of bendamustine, with a fully functional pan-HDAC inhibitor, vorinostat. Bendamustine has substantial clinical activity against B-cell malignancies, lacks cross resistance with many other anticancer drugs, has superior antimyeloma activity compared to melphalan, and can safely be combined with proteasome inhibitors. The Histone deacetylase inhibitor (HDACi) vorinostat has a broad spectrum of epigenetic activities and sensitizes lymphoma and myeloma cells for a variety of cytotoxic drugs. Vorinostat in particular has a strong synergy with proteasome inhibitors, presumably due to the inhibition of HDAC6. HDAC6 allows polyubiquitinated substrate protein to bypass the inhibited proteasome towards degradation via the autophagy pathway. The EDO-S101 molecule was designed to create a very potent cytotoxic agent for systemic use upon exploiting the synergies of a bi-functional mode of action. Methods: The aim of the in vitro study was to compare the cytotoxicity of EDO-S101 against Multiple Myeloma (MM), leukemia and lymphoma cells with established alkylating agents and to investigate its cellular and molecular effects in combination with proteasome inhibitors. Results: The IC50 of EDO-S101 ranged between 5-13 μM in 8 myeloma cell lines and thus one order of magnitude lower than the IC50 for bendamustine (70 - 〉 200 μM). Myeloma cell lines with adaptive resistance against bortezomib or carfilzomib did not differ from non-adapted cells in their IC50 for EDO-S101. Likewise, the IC50 for 3 ABC type DLBCL cell lines ranged between 3-8 μM for EDO-S101, compared to bendamustine 〉 50 μM. EDO-S101 had significant synergistic cytotoxicity with the proteasome inhibitors bortezomib and carfilzomib across all cell types tested, in contrast to melphalan and bendamustine. In a panel of 6 MM cell lines, the combination of EDO-S101 yielded a mean combination index for synergistic cytotoxicity of 0.12 (± 0.06) and 0.08 (± 0.06) for bortezomib or carfilzomib combinations, respectively (with values 〈 0.8 indicating significant synergism), in contrast to bendamustine 1.35 (± 0.87) and 1.29 (± 0.86), and melphalan 1.09 (± 0.66) and 1.20 (± 1.44). Likewise, EDO-S101 showed synergistic cytotoxicity with bortezomib and carfilzomib against mantle cell lymphoma cells (mean CIs 0.6 and 0.2), in contrast to bendamustine (CIs 1.72, 1.22) and melphalan (CIs 1.16 and 1.17), as well as ABC type DLBCL (CIs 0.32 and 0.28 for EDO S-101, compared to 15 and 34 for bendamustine and 0.87 and 0.78 for melphalan). To dissect the molecular mechanism for the unique synergistic cytotoxicity of EDO-S101 with proteasome inhibition, which contrasted to the established alkylating drugs, we analysed proteasome activity, protein acetylation status, accumulation of polyubiquitinated proteins as well as regulatory and effector proteins of the unfolded protein response (UPR) in RPMI8226 myeloma cells by western blot. EDO-S101 induced strong protein and histone acetylation, confirming its HDACi-like activity. Interestingly, and in contrast to bendamustine, melphalan and vorinostat, EDO-S101 was a strong inducer of pIRE-1, the key activator protein of the UPR in MM cells. IRE1 activation and induction of the UPR have recently been shown to be the major determinants of proteasome inhibitor sensitivity in human MM. Conclusions: We conclude that EDO-S101, an alkylating HDAC inhibitor fusion molecule, displays bi-functional activity. Compared to bendamustine and melphalan, it has superior monoactivity in vitro against hematologic malignancies including MM, mantle cell lymphoma and ABC type DLBCL. Of particular interest is the strong synergy of EDO-S101 with proteasome inhibitors which also stands out in comparison to the established alkylating agents. The latter is associated with induction of pIRE1, the key regulator of the UPR by EDO- S101. Both, the superior monoactivity of EDO-S101 and its mechanism-based synergy with proteasome inhibitors warrant further development of the compound towards clinical testing. Disclosures Driessen: Mundipharma: Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...