GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (19)
  • 1
    In: Blood, American Society of Hematology, Vol. 106, No. 13 ( 2005-12-15), p. 4287-4293
    Abstract: Transcription factor nuclear factor kappa B (NF-κB) plays a central role in the pathogenesis of classical Hodgkin lymphoma (cHL). In anaplastic large-cell lymphomas (ALCLs), which share molecular lesions with cHL, the NF-κB system has not been equivalently investigated. Here we describe constitutive NF-κB p50 homodimer [(p50)2] activity in ALCL cells in the absence of constitutive activation of the IκB kinase (IKK) complex. Furthermore, (p50)2 contributes to the NF-κB activity in Hodgkin/Reed-Sternberg (HRS) cells. Bcl-3, which is an inducer of nuclear (p50)2 and is associated with (p50)2 in ALCL and HRS cell lines, is abundantly expressed in ALCL and HRS cells. Notably, a selective overexpression of Bcl-3 target genes is found in ALCL cells. By immunohistochemical screening of 288 lymphoma cases, a strong Bcl-3 expression in cHL and in peripheral T-cell non-Hodgkin lymphoma (T-NHL) including ALCL was found. In 3 of 6 HRS cell lines and 25% of primary ALCL, a copy number increase of the BCL3 gene locus was identified. Together, these data suggest that elevated Bcl-3 expression has an important function in cHL and peripheral T-NHL, in particular ALCL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2005
    In:  Blood Vol. 106, No. 11 ( 2005-11-16), p. 1226-1226
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 1226-1226
    Abstract: Hematopoiesis occurs in the liver and the bone marrow during murine development. Newborn mice with a ubiquitous deletion of IκBα develop a severe hematological disorder characterized by an increase of granulocyte/erythroid/monocyte/macrophage colony-forming units (CFU-GEMM) and hypergranulopoiesis. Here, we provide evidence that this particular myeloproliferative disturbance is mediated by continuously deregulated perinatal expression of the Notch ligand Jagged1 in IκBα-deficient hepatocytes. Signaling through Notch-family cell surface receptors and their ligands has been shown to be involved in cell fate decisions of stem cells during hematopoietic/mesenchymal differentiation. However, the role of Notch signaling in myelopoiesis is still under discussion as results gained using different experimental conditions are contradictory. Due to embryonic lethality of Notch1- and Jagged1-deficient mice, alterations of myelopoiesis are difficult to be adressed. In this study, we investigated the function of IκBα and its role within the Jagged/Notch signaling pathway during myelopoiesis. Therefore, a novel mouse line with a conditional (floxed) allele of ikba was established. Ubiquitous deletion of IκBα after cross-breeding with Deleter-Cre mice results in hypergranulopoiesis comparable to the conventional deletion of the allele. A detailed analysis revealed a myeloproliferative syndrome with increased numbers of cycling progenitor cells. The morphological analysis of liver and bone marrow of IκBα-deficient mice showed hypercellularity. The cellular components were dominated by myeloid lineages and represented mostly granulocyts with dysplastic features, characterized by pseudo-Pelger-Huet formation. Myelodysplasia could also be detected in megakaryopoiesis by the presence of micromegakaryocytes. Alterations in erythropoiesis were detectable by condensed chromatin and an asychrony of the nucleocytoplasmic ratio in the red cell precursor population. Together, our results indicate that ubiquitous loss of IκBα results in hypergranulopoiesis progressing to a myelodysplastic syndrome. Systematic analysis of transcription factors, growth factor receptors and NF-κB-regulated cell-survival genes was performed to determine molecular mechanisms underlying hypergranulopoiesis. Our data suggested that Notch1-dependent signals were responsible for the myeloproliferative disorder as Notch1 was upregulated in neutrophils and the Notch ligand Jagged1 in non-hematopoietic cells, namly hepatocytes. Myeloproliferation could be inhibited by blocking the Notch1 ligand Jagged1. Interestingly, deletion of IκBα in neutrophils and macrophages or hematopoietic stem cells did not result in dysregulation of myelopoiesis despite constitutive NF-κB activation in these cells. This establishes the relevance of non-hematopoietic expression of Jagged1 for the control and regulation of myelopoiesis. In summary, we show that cell-fate decisions leading to a premalignant hematopoietic disorder can be initiated by non-hematopoietic cells with inactive IκBα.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 94, No. 9 ( 1999-11-01), p. 3129-3134
    Abstract: The transcription factor NF kappa B (NF-κB) mediates the expression of numerous genes involved in diverse functions such as inflammation, immune response, apoptosis, and cell proliferation. We recently identified constitutive activation of NF-κB (p50/p65) as a common feature of Hodgkin/Reed-Sternberg (HRS) cells preventing these cells from undergoing apoptosis and triggering proliferation. To examine possible alterations in the NF-κB/IκB system, which might be responsible for constitutive NF-κB activity, we have analyzed the inhibitor I kappa B alpha (IκB) in primary and cultured HRS cells on protein, mRNA, and genomic levels. In lymph node biopsy samples from Hodgkin’s disease patients, IκB mRNA proved to be strongly overexpressed in the HRS cells. In 2 cell lines (L428 and KM-H2), we detected mutations in the IκB gene, resulting in C-terminally truncated proteins, which are presumably not able to inhibit NF-κB–DNA binding activity. Furthermore, an analysis of the IκB gene in single HRS cells micromanipulated from frozen tissue sections showed a monoallelic mutation in 1 of 10 patients coding for a comparable C-terminally truncated IκB protein. We suggest that the observed IκB mutations contribute to constitutive NF-κB activity in cultured and primary HRS cells and are therefore involved in the pathogenesis of these Hodgkin’s disease (HD) patients. The demonstrated constitutive overexpression of IκB in HRS cells evidences a deregulation of the NF-κB/IκB system also in the remaining cases, probably due to defects in other members of the IκB family.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1999
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3164-3164
    Abstract: Osteolytic bone disease (BD) is a hallmark of multiple myeloma (MM) with tumor cells in the bone marrow shifting the balance of the bone remodeling process towards massive bone resorption. As a result, patients develop devastating osteolytic lesions that lead to non-healing bone fractures and pain, affecting life quality and mortality rates. Bones have the capacity to adapt mass and structure to mechanical stimuli, as dramatically seen in young tennis athletes with muscle-bone asymmetries in the playing arm. We have previously shown that tibial mechanical loading rescued bone loss in our murine MOPC315.BM MM model with an advanced osteolytic phenotype. Here, we hypothesize that mechanical strain (1) modulates the bone microenvironment and (2) has antitumor activity in mice. (1) We determined bone formation and bone resorption parameters by time-lapsed microCT analysis to show how skeletal mechanical stimuli control MM bone disease (MMBD) progression over time. (2) To monitor tumor progression, we used non-invasive bioluminescence imaging (BLI) and enzyme-linked immunosorbent assay (ELISA) for detection of MOPC315.BM specific immunoglobulin A (IgA) levels. In our in vivo loading study, we injected MOPC315.BM cells intratibially (i.t.) in BALB/c mice to establish MMBD (n=17) and used PBS-injected (n=13) as well as noninjected mice (n=8) as controls. Eight (MM), seven (PBS) and 8 (noninjected) mice received compressive tibial loading for three weeks while nine (MM) and six (PBS) mice served as nonloaded controls. The bone remodeling response to mechanical loading was investigated by longitudinal in vivo microCT imaging performed every 5 days (at day 13, 18, 23, 28, and 33 after i.t. injection). MicroCT images from day 33 were geometrically registered onto images of day 13 and resampled into the same coordinate system using Amira and scripts written in Matlab for post-processing. Normalized newly mineralized and eroded bone volume (MV/BV, EV/BV), normalized formed and eroded bone surface area (MS/BS, ES/BS), mineralized thickness (MTh) and eroded depth (ED) were quantified. ANOVA was performed to examine the effect of loading and injection. Loading significantly increased the periosteal MV/BV, periosteal and endosteal MS/BS as well as decreased the periosteal EV/BV and periosteal and endocortical ES/BS. Endosteal MV/BV or EV/BV were not affected, which may be due to differences in the local strain environment at the two surfaces. In addition, mechanical stimuli did not influence ED, but led to diminished periosteal EV/BV and periosteal ES/BS suggesting fewer resorption sites in tibiae subjected to loading. Injection significantly affected periosteal and endosteal bone formation and resorption (Fig.1). Significant increases in cortical bone mass of loaded MM mice were accompanied by decreases in tumor load as evidenced by MOPC315.BM specific IgA levels (Fig. 2A). Interestingly, quantification of tibial and whole body bioluminescence signal intensities revealed controlled tumor growth in the loaded left tibia and a further delay of tumor cell dissemination throughout body of MM mice (Fig. 2B). Our data provide evidence that skeletal mechanical stimuli have anti-myeloma effects and rescue osteolytic bone loss in MMBD. The anabolic response to mechanical loads outweighs the anti-resorptive effect of MM cells, suggesting a combination of loading with bone resorption inhibitors in future therapeutic strategies. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2004
    In:  Blood Vol. 104, No. 11 ( 2004-11-16), p. 645-645
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 645-645
    Abstract: Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells. Thereby they control cell fate decisions and survival. We recently demonstrated that Notch has a pathogenetic role in multiple myeloma (MM), where tight interactions between neoplastic plasma cells and their microenvironment are essential for tumor cell growth (Blood.2004; 103:3511–3515). Our data provided evidence that Notch1 and Notch2 were highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts showed low to undetectable levels of Notch. Furthermore, our functional data indicated that activating the Notch pathway in MM cells by the Notch ligand Jagged1 potently induced tumor cell growth and suggested that these interactions contribute to myelomagenesis in vivo. In this study, we blocked Notch by novel γ-secretase inhibitors in cultured MM cells. γ-secretase catalyzes the release of the intracellular domain of Notch that subsequently translocates to the nucleus to activate expression of downstream target genes. Inhibition of γ-secretase activity is currently investigated as a therapeutic strategy in Alzheimer’s disease, because γ-secretase similarly cleaves amyloid precursor proteins to release Aβ peptides, accumulation of which is causally related to Alzheimer’s disease. To identify novel γ-secretase inhibitors that might block Notch in MM cells, we analyzed two million compounds by 3D in silico screening. Thereby structurally known inhibitors were compared with compounds from data banks. Novel structurally related compounds (27) were tested by in vitro assays. Specific inhibition of Notch signaling was controlled by RT-PCR of the down-regulated Notch target gene Hes-1 in MM cells. In addition, tumor cell proliferation of MM cells was efficiently blocked by 3 out of 27 newly identified inhibitors in a dose-dependent manner. Currently, we investigate whether these compounds also have potent anti-tumor activity against MM cells in mouse models in vivo. If so, interruption of Notch signaling by newly identified inhibitors might be a novel therapeutic principle to control the proliferation capacity of MM.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 106, No. 5 ( 2005-09-01), p. 1801-1807
    Abstract: The immunosuppressive macrolide rapamycin and its derivative everolimus (SDZ RAD, RAD) inhibit the mammalian target of rapamycin (mTOR) signaling pathway. In this study, we provide evidence that RAD has profound antiproliferative activity in vitro and in NOD/SCID mice in vivo against Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) cells. Moreover, we identified 2 molecular mechanisms that showed how RAD exerts antiproliferative effects in HL and ALCL cells. RAD down-regulated the truncated isoform of the transcription factor CCAAT enhancer binding protein β (C/EBPβ), which is known to disrupt terminal differentiation and induce a transformed phenotype. Furthermore, RAD inhibited constitutive nuclear factor κB (NF-κB) activity, which is a critical survival factor of HL cells. Pharmacologic inhibition of the mTOR pathway by RAD therefore interferes with essential proliferation and survival pathways in HL and ALCL cells and might serve as a novel treatment option. (Blood. 2005;106: 1801-1807)
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 1522-1522
    Abstract: Notch pathway inhibition in multiple myeloma (MM) cells is a promising new therapeutic approach since it controls myeloma cell growth as we previously demonstrated (Blood. 2004; 103:3511–3515). Notch signaling is involved in the tight interactions between myeloma cells and the bone marrow microenvironment and induces tumor cell growth in MM. We provided evidence that Notch receptors are expressed on MM cells and that Notch ligands on MM and bone marrow stromal cells activate Notch signaling through homotypic as well as heterotypic interactions in MM cells. In this study, we analyzed whether Notch signaling might be activated in osteoclasts, which express Notch receptors but not the ligands. To that end, we co-cultured MM cells and human osteoclasts, which were generated from mononuclear hematopoietic precursors of healthy donors using in vitro RANKL/M-CSF stimulation. Co-cultivation specifically activated Notch in osteoclasts and induced osteoclast activity as measured by mRNA expression of the tartrate-resistant acid phosphatase. The novel Notch pathway inhibitor, so called γ-secretase inhibitor 1 (GSI1), that we recently identified by structural comparison of known inhibitors with unknown compounds by data bank screening, specifically inhibited Notch signaling in osteoclasts and blocked their activity in this co-cultivation assay. In addition, GSI1 induced apoptosis in osteoclasts in higher concentrations. We suggest from our data that GSI treatment controls MM cell growth and concomitantly aberrant osteoclast activity in vitro and possibly in vivo, that is under current investigation. We further hypothesized that GSI1 can be combined with the proteasome inhibitor bortezomib, which has been known to have in vitro and in vivo activity against MM. We evaluated the activity of the combination of GSI1 and bortezomib against MM cell growth and survival. Proliferation of MM cell lines treated with GSI, bortezomib and their combination was determined by CellTiter-Glo® luminescent cell viability assay. AnnexinV-FITC/PI staining and cleaved poly (ADP-ribose) polymerase (PARP) staining were used to determine the degree of apoptosis. Although treatment of MM cell lines (OPM2, LP1) with either drug alone significantly inhibited proliferation and induced apoptosis with concentrations of GSI1 (30–60 μM) and bortezomib (1–4 nM), the combination resulted in synergistic inhibition of cell growth and survival. Our data suggest that combination of GSI1 and bortezomib is a rational novel treatment option in MM that simultaneously targets different proliferative and anti-apoptotic pathways. Whether this combination might also have synergistic activity against aberrant osteoclast activity in MM will be further investigated.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 275-275
    Abstract: Tumor cell proliferation and survival of Hodgkin/Reed-Sternberg (HRS) cells are triggered through Jagged1 ligand-induced Notch1 signaling via homotypic and heterotypic cell-cell interactions in classical Hodgkin lymphoma. The developmental pathway Notch partly mediates its effects in HRS cells by stimulation of alternative NF-kB signaling. We further demonstrated that high-level expression of the essential Notch coactivator Mastermind-like 2 and downregulation of the Notch inhibitor Deltex1 contribute to aberrant activation of Notch signaling in HRS cells. Our data suggested that targeting the Notch pathway is a rational treatment strategy in classical Hodgkin lymphoma. In this study we analyzed Notch inhibition by use of the gamma secretase inhibitor GSI XII in a Hodgkin lymphoma xenotransplantation model. To this end the HRS cell line L540cy (1 x 107 cells/per mouse) was transplanted into NOD/SCID mice. After tumor growth (0.3 cm³ mean tumor volume) mice were treated daily with increasing doses of GSI XII (5-10 mg/kg). Surprisingly, L540cy cells were completely drug-resistant in vivo in contrast to high GSI XII sensitivity in vitro. To dissect potential mechanisms of drug resistance we performed human StellARrayTM quantitative polymerase chain reaction (qPCR) arrays to analyze Notch target genes in GSI XII-treated compared to untreated L540cy cells. Interestingly, inhibition of Notch activity resulted in strong mRNA upregulation of the transcription factor glioma-associated oncogene 1 (Gli1), a final effector of the developmental signaling pathway Hedgehog (HH). Chromatin immunoprecipitation (ChIP) further revealed that both negative regulatory Notch target proteins Hey1 and Hes7 directly bind three different N-boxes present in the GLI1 first intron to suppress GLI1 mRNA expression in untreated L540cy cells. In general, the HH pathway is activated through ligand binding of secreted Sonic Hedgehog (SHH). As a result Gli transcription factors translocate to the nucleus and induce target gene expression such as GLI1 or CCND1. Despite high secretion of SHH by HRS cells after two days in culture (conditioned medium), HH signaling was inactive in untreated L540cy cells. Only after release of the negative regulatory Notch targets of the hairy and enhancer of split (HES) family through Notch inhibition and concomitant increase of Gli1 expression, HH signaling was activated by SHH. HH signaling mediated drug resistance of L540cy cells in conditioned medium compared to fresh medium (SHH negative) and thereby compensated for reduced Notch activity in vitro. We hypothesized that this mechanism might contribute to GSI XII drug resistance in vivo. To proof our hypothesis we coinhibited the Notch and HH pathways in L540cy cells. As expected inhibition of the HH pathway alone by use of cyclopamine did not significantly reduce growth of L540cy cells. However, simultaneous targeting of L540cy tumors through GSI XII and cyclopamine efficiently controlled tumor cell growth. Our data indicate a first molecular link between Notch and HH in HRS cells mediating drug resistance. We suggest inhibition of both developmental pathways for effective HRS tumor growth control. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 99, No. 8 ( 2002-04-15), p. 3060-3062
    Abstract: Immunoglobulin transcription is impaired in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin disease (cHD). We recently demonstrated that defective immunoglobulin promoter transcription correlates with the down-regulation of the B-cell transcription factors Oct2 and BOB.1/OBF.1. These results prompted us to investigate whether immunoglobulin enhancer activity is also impaired in HRS cells and whether as yet unidentified factors could be necessary for immunoglobulin enhancer activity in HRS cells of cHD. Here we analyzed 30 cases of cHD for expression of the Ets family member PU.1 that is known to collaborate with multiple transcription factors and to regulate expression of immunoglobulin genes. We show that PU.1 is not expressed in primary and cultured HRS cells. Reintroduction of PU.1 and Oct2 in cultured HRS cells restored the activity of cotransduced immunoglobulin enhancer constructs. Our study identifies PU.1 deficiency as a recurrent defect in HRS cells that might contribute to their impairment of immunoglobulin transcription.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2002
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society of Hematology ; 2003
    In:  Blood Vol. 102, No. 3 ( 2003-08-01), p. 1028-1034
    In: Blood, American Society of Hematology, Vol. 102, No. 3 ( 2003-08-01), p. 1028-1034
    Abstract: Arsenic can induce apoptosis and is an efficient drug for the treatment of acute promyelocytic leukemia. Currently, clinical studies are investigating arsenic as a therapeutic agent for a variety of malignancies. In this study, Hodgkin/Reed-Sternberg (HRS) cell lines served as model systems to characterize the role of nuclear factor–κB (NF-κB) in arsenic-induced apoptosis. Arsenic rapidly down-regulated constitutive IκB kinase (IKK) as well as NF-κB activity and induced apoptosis in HRS cell lines containing functional IκB proteins. In these cell lines, apoptosis was blocked by inhibition of caspase-8 and caspase-3–like activity. Furthermore, arsenic treatment down-regulated NF-κB target genes, including tumor necrosis factor-αreceptor–associated factor 1 (TRAF1), c-IAP2, interleukin-13 (IL-13), and CCR7. In contrast, cell lines with mutated, functionally inactive IκB proteins or with a weak constitutive IKK/NF-κB activity showed no alteration of the NF-κB activity and were resistant to arsenic-induced apoptosis. A direct role of the NF-κB pathway in arsenic-induced apoptosis is shown by transient overexpression of NF-κB–p65 in L540Cy HRS cells, which protected the cells from arsenic-induced apoptosis. In addition, treatment of NOD/SCID mice with arsenic trioxide induced a dramatic reduction of xenotransplanted L540Cy Hodgkin tumors concomitant with NF-κB inhibition. We conclude that inhibition of NF-κB contributes to arsenic-induced apoptosis. Furthermore, pharmacologic inhibition of the IKK/NF-κB activity might be a powerful treatment option for Hodgkin lymphoma.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2003
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...