GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (2)
Material
Publisher
  • American Society of Hematology  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 455-455
    Abstract: Acquired thrombotic thrombocytopenic purpura (aTTP), a potentially fatal syndrome, is primarily caused by autoantibodies against the metalloprotease ADAMTS13. Most patients with aTTP harbor an immunoglobulin (Ig) G isotype in blood that targets the spacer domain of ADAMTS13. The precise epitopes of the anti-ADAMTS13 IgGs and the mechanism underlying their inhibition activity are not fully understood. We hypothesized that inhibitory IgG autoantibodies from aTTP patients achieve their inhibitory function by binding to a discontinuous epitope in the spacer domain of ADAMTS13. To test this hypothesis, we determined the binding epitope of one out of 〉 100 unique human monoclonal antibody (mAb) fragments (single-chain Fv, scFv) isolated by phage display from aTTP patients. We developed a novel hydrogen-deuterium exchange-mass spectrometry technology (HX-MS) to identify the antibody binding sites at single amino acid residue resolution. Human ADAMTS13 inhibitory scFv 4-20 was expressed in E. coli Top10 cells and purified to homogeneity by Ni-chelating affinity chromatography. In the HX-MS experiment, the mAb was coupled to affi-gel 10 resin and used to bind recombinant ADAMTS13-MDTCS fragment expressed in a stably transfected Drosophila schneider 2 (S2) cell line. After exchange with deuterium (D2O) oxide for various periods of time, the reaction was stopped, the protein was eluted, and digested to peptide fragments with pepsin, and the peptides with or without deuterium bound were resolved and identified by fast HPLC and mass spectrometry. We find that mAb scFv4-20 binds to amino acid residues Arg636, Leu637, Arg639, and Leu640 spanning from Leu632 to Leu640 (in exosite 4) in the spacer domain of ADAMTS13. This sequence is highly conserved in the ADAMTS13 spacer domains from zebrafish to mammals. In addition, mAb scFv4-20 binds Arg660, Tyr661, and Tyr665 in exosite 3, previously shown to play an important role in substrate recognition and anti-ADAMTS13 autoantibody-mediated inhibition, as well as Lys608, upstream exosites 3 and 4. Apparently, mAb scFv4-20 inhibits plasma ADAMTS13 activity (IC50 ∼0.40 nM) by binding these non-linear surface residues in the spacer domain (Fig. 1A). In agreement, site-directed mutagenesis shows that complete deletion (Δ632LTEDRLPR639) or partial deletion (Δ632LTED635 or Δ636RLPR639), or replacement of these residues with alanines (632LTED635/4A or 636RLPR639/4A) abolished or dramatically reduced mAb scFv4-20 binding. A deletion or alanine substitution of the surface residues on exosite 4 also abolished or reduced ADAMTS13 proteolytic activity toward a fluorescein-labeled VWF73 peptide and multimeric VWF (Fig. 1B), indicating that the ADAMTS13 epitope for mAb scFv4-20 is also part of ADAMTS13’s substrate recognition site. We conclude that anti-ADAMTS13 autoantibodies work by physically blocking the well-conserved VWF binding site on ADAMTS13. These results demonstrate the powerful use of HX-MS technology to determine both linear and non-linear antibody binding epitopes. The results provide valuable information concerning the mechanism of autoantibody-mediated aTTP that may be exploited to develop targeted therapy by reengineering ADAMTS13 to avoid autoantibody inhibition. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 108-108
    Abstract: Acquired thrombotic thrombocytopenic purpura (TTP), a potentially fatal arterial thrombotic disorder, is primarily caused by autoantibodies that bind and inhibit plasma von Willebrand factor (VWF)-cleaving metalloprotease (ADAMTS13) activity. However, the mechanisms underlying autoantibody-mediated inhibition of ADAMTS13 activity and acquired TTP are not fully understood. By a hydrogen-deuterium exchange coupled with mass spectrometry (HX-MS) technique, we found that human monoclonal anti-ADAMTS13 antibodies, the single chain variable region fragments (scFvs)4-20, 4-16, and 3-1 that were, isolated by phage display from two patients with acquired TTP, predominantly bound to a discontinuous and conformational epitope in the spacer domain of ADAMTS13 with a subtle difference. The epitope for scFvs4-20 and 4-16 comprises five small flexible loops, including a previously described motif A (or exosite 3, R659-E664), motif B (exosite 4, L632-R639), and several other outlying residues (F592, Y658, and Y665), while scFv3-1 bound all other residues except for those in motif A. Site-directed mutagenesis and biochemical analysis demonstrated that both motifs A and B were found to be critical for recognition and proteolysis of VWF73 and multimeric VWF. Deletion of motif A or motif B in full-length ADAMTS13 abolished the binding of scFvs4-20 and 4-16 but not 3-1 (which did not bind motif A). Our findings demonstrate the powerful use of HX-MS for mapping antibody epitopes at nearly single amino acid resolution. This provides a new way to reveal mechanisms of autoantibody-mediated inhibition of plasma ADAMTS13 activity and acquired TTP. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...