GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 1998
    In:  Blood Vol. 92, No. 6 ( 1998-09-15), p. 2157-2163
    In: Blood, American Society of Hematology, Vol. 92, No. 6 ( 1998-09-15), p. 2157-2163
    Abstract: Microcytic anemia (mk) mice and Belgrade (b) rats have severe iron deficiency anemia due to defects in intestinal iron transport and erythroid iron utilization. Both animal mutants carry the same missense mutation in Nramp2, the first mammalian iron transporter to be identified. This mutation, in which glycine 185 is changed to arginine (G185R), occurs within predicted transmembrane domain 4 of the protein. We have performed site-directed mutagenesis of murine Nramp2, focusing on amino acids of transmembrane domain 4 that are highly conserved among Nramp-like proteins. We have expressed each mutant form in transfected cells and examined iron transport function, subcellular localization, and protein amounts. All tested forms of Nramp2 localize to the plasma membrane and to transferrin-containing endosomes. Most transmembrane domain 4 mutations affect the amount of protein detected and consequently show diminished iron transport. The G185R mutation, however, causes near total loss of Nramp2 function that cannot be fully explained by a decreased amount of protein, indicating that G185R disrupts iron transport through an alteration in the function of Nramp2, rather than degradation of the protein. © 1998 by The American Society of Hematology.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1998
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 1998
    In:  Blood Vol. 92, No. 6 ( 1998-09-15), p. 2157-2163
    In: Blood, American Society of Hematology, Vol. 92, No. 6 ( 1998-09-15), p. 2157-2163
    Abstract: Microcytic anemia (mk) mice and Belgrade (b) rats have severe iron deficiency anemia due to defects in intestinal iron transport and erythroid iron utilization. Both animal mutants carry the same missense mutation in Nramp2, the first mammalian iron transporter to be identified. This mutation, in which glycine 185 is changed to arginine (G185R), occurs within predicted transmembrane domain 4 of the protein. We have performed site-directed mutagenesis of murine Nramp2, focusing on amino acids of transmembrane domain 4 that are highly conserved among Nramp-like proteins. We have expressed each mutant form in transfected cells and examined iron transport function, subcellular localization, and protein amounts. All tested forms of Nramp2 localize to the plasma membrane and to transferrin-containing endosomes. Most transmembrane domain 4 mutations affect the amount of protein detected and consequently show diminished iron transport. The G185R mutation, however, causes near total loss of Nramp2 function that cannot be fully explained by a decreased amount of protein, indicating that G185R disrupts iron transport through an alteration in the function of Nramp2, rather than degradation of the protein. © 1998 by The American Society of Hematology.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1998
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 135, No. 11 ( 2020-03-12), p. 791-803
    Abstract: The BCL-2 inhibitor venetoclax combined with hypomethylating agents or low-dose cytarabine represents an important new therapy for older or unfit patients with acute myeloid leukemia (AML). We analyzed 81 patients receiving these venetoclax-based combinations to identify molecular correlates of durable remission, response followed by relapse (adaptive resistance), or refractory disease (primary resistance). High response rates and durable remissions were typically associated with NPM1 or IDH2 mutations, with prolonged molecular remissions prevalent for NPM1 mutations. Primary and adaptive resistance to venetoclax-based combinations was most commonly characterized by acquisition or enrichment of clones activating signaling pathways such as FLT3 or RAS or biallelically perturbing TP53. Single-cell studies highlighted the polyclonal nature of intratumoral resistance mechanisms in some cases. Among cases that were primary refractory, we identified heterogeneous and sometimes divergent interval changes in leukemic clones within a single cycle of therapy, highlighting the dynamic and rapid occurrence of therapeutic selection in AML. In functional studies, FLT3 internal tandem duplication gain or TP53 loss conferred cross-resistance to both venetoclax and cytotoxic-based therapies. Collectively, we highlight molecular determinants of outcome with clinical relevance to patients with AML receiving venetoclax-based combination therapies.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 35-36
    Abstract: Background: Shwachman-Diamond Syndrome (SDS) is a bone marrow failure disorder caused by impaired removal of EIF6 from the nascent 60S ribosome subunit, resulting in defective ribosome assembly. SDS patients have a high risk of myeloid neoplasms (MN) and the prognosis of those that develop MN is poor. Knowledge of the kinetics and functional consequences of somatic mutation acquisition in SDS may offer insight into mechanism of transformation and the potential for therapuetic intervention. Methods: We performed whole exome sequencing of 45 samples from 30 patients, and validated recurrent somatically mutated genes using targeted sequencing with error suppression in prospectively collected samples from 110 patients in the North American SDS Registry. We correlated mutation status with clinical outcome and performed functional studies to understand the consequence of somatic mutations in SDS. Results: We detected somatic mutations in 74 of 98 (76%) patients with germline biallelic SBDS mutations (median 2 mutations/patient, range 0-21). We found no mutations in patients with SDS-like disease; those who have clinical features of SDS without disease defining mutations. Of the 83 patients with SDS without a MN diagnosis, 60 (72%) had detectable clonal hematopoiesis (CH), 40 of whom had more than one mutation (median 3, range 1-21). The most frequently mutated genes were EIF6 (60/98, 61%),TP53 (44/98, 45%), PRPF8 (12/98, 12%), and CSNK1A1 (6/98, 6%). Among SDS patients with TP53 mutated CH, 90.9% (30 of 33) had concurrent EIF6 mutations. To determine whether EIF6 and TP53 mutations occur in the same or different clones, we performed single cell DNA sequencing. Among the 47 clones identified with either EIF6 or TP53 mutations, 24 had a sole EIF6 mutation, and 21 had a sole TP53 mutation, showing that these mutations arise in separate clones. To study the functional consequences of EIF6 missense mutations, we cloned 7 patient-derived mutations and generated cell lines expressing wild-type or mutant EIF6 cDNA. We found six mutants (I13N, R67W, G69S, P73R, A194T, G196R) reduced levels of EIF6 protein compared with wild type EIF6, despite comparable abundance of mRNA. The most common recurrent mutation, N106S, was found in 20% of patients and, by contrast to others listed above, did not change protein expression. This mutation is located at the EIF6/60S protein interface and disrupted the interaction of N106S-EIF6 with the 60S subunit as measured by polysome profiling followed by western blotting. To compare the effects of EIF6 versus TP53 somatic mutations in context of SDS deficient translation, we measured ribosome maturation and translation in SDS cells containing shRNAs targeting EIF6 or TP53. EIF6 knockdown ameliorated the SDS defect, reflected by improved ribosome joining (normalization of the 80:60s ratio) and enhanced protein translation (increased O-propargyl-puromycin incorporation), whereas TP53 knockdown had no effect. Knockdown of EIF6 in SDS deficient cells decreased p53 pathway activation as demonstrated by decreased CDKN1A expression. TP53 mutations were significantly associated with MN diagnosis (p=0.023), but were also common in SDS CH and typically stable over time. To identify the characteristics associated with transformation, we analyzed exomes from 7 patients with TP53 mutated myeloid malignancy for allelic imbalances at the TP53 locus and found that all 7 had biallelic alteration of TP53. Using single cell DNA sequencing from serial samples, we observed that TP53 LOH can precede transformation by several years and can distinguish pre-leukemic clones from indolent clones with monoallelic TP53 alterations. Somatic EIF6 mutations were not found in the leukemic clones. These results suggest early detection of TP53 LOH may distinguish clones with leukemic potential. Conclusions: In SDS, impairment of ribosome maturation drives selection of clones with somatic EIF6 or TP53 mutations. EIF6 mutations promote competitive fitness by rescuing the SDS ribosome defect and decreasing p53 pathway activation, and do not contribute to malignant transformation. TP53 mutations decrease checkpoint activation without affecting ribosome assembly. These results provide genetic evidence that germline SBDS deficiency causes a global, disease-specific HSC fitness constraint that drives parallel development of somatic CH and provides a mechanistic rationale for clinical surveillance. Disclosures Dale: Emendo BioTherapeutics: Consultancy; X4 Pharmaceuticals: Research Funding; X4 Pharmaceuticals: Honoraria. Gansner:Alnylam Pharmaceuticals: Current Employment, Current equity holder in private company. Edwards:Jazz Pharmaceuticals: Consultancy, Honoraria. Fleming:DISC Medicine: Consultancy, Membership on an entity's Board of Directors or advisory committees. Lindsley:MedImmune: Research Funding; Takeda Pharmaceuticals: Consultancy; Bluebird Bio: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood Advances, American Society of Hematology, Vol. 6, No. 1 ( 2022-01-11), p. 297-306
    Abstract: Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure syndrome with leukemia predisposition. An understanding of the hematologic complications of SDS with age could guide clinical management, but data are limited for this rare disease. We conducted a cohort study of 153 subjects from 143 families with confirmed biallelic SBDS mutations enrolled on the North American Shwachman Diamond Registry or Bone Marrow Failure Registry. The SBDS c.258 + 2T & gt;C variant was present in all but 1 patient. To evaluate the association between blood counts and age, 2146 blood counts were analyzed for 119 subjects. Absolute neutrophil counts were positively associated with age (P & lt; .0001). Hemoglobin was also positively associated with age up to 18 years (P & lt; .0001), but the association was negative thereafter (P = .0079). Platelet counts and marrow cellularity were negatively associated with age (P & lt; .0001). Marrow cellularity did not correlate with blood counts. Severe marrow failure necessitating transplant developed in 8 subjects at a median age of 1.7 years (range, 0.4-39.5), with 7 of 8 requiring transplant prior to age 8 years. Twenty-six subjects (17%) developed a myeloid malignancy (16 myelodysplasia and 10 acute myeloid leukemia) at a median age of 12.3 years (range, 0.5-45.0) and 28.4 years (range, 14.4-47.3), respectively. A lymphoid malignancy developed in 1 patient at the age of 16.9 years. Hematologic complications were the major cause of mortality (17/20 deaths; 85%). These data inform surveillance of hematologic complications in SDS.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 11 ( 2010-09-16), p. 1919-1923
    Abstract: Langerhans cell histiocytosis (LCH) has a broad spectrum of clinical behaviors; some cases are self-limited, whereas others involve multiple organs and cause significant mortality. Although Langerhans cells in LCH are clonal, their benign morphology and their lack (to date) of reported recurrent genomic abnormalities have suggested that LCH may not be a neoplasm. Here, using 2 orthogonal technologies for detecting cancer-associated mutations in formalin-fixed, paraffin-embedded material, we identified the oncogenic BRAF V600E mutation in 35 of 61 archived specimens (57%). TP53 and MET mutations were also observed in one sample each. BRAF V600E tended to appear in younger patients but was not associated with disease site or stage. Langerhans cells stained for phospho-mitogen–activated protein kinase kinase (phospho-MEK) and phospho-extracellular signal-regulated kinase (phospho-ERK) regardless of mutation status. High prevalence, recurrent BRAF mutations in LCH indicate that it is a neoplastic disease that may respond to RAF pathway inhibitors.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 5849-5849
    Abstract: Clinical Genome Resource (ClinGen) is an NIH/NHGRI-funded effort dedicated to building an authoritative central resource that defines the clinical relevance of genes and variants for use in precision medicine and research. ClinGen has developed both gene and variant expert panels to adapt the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for consistent and accurate variant classification of specific genes and diseases. Here, we describe a new effort initiated in 2018 and supported by the American Society of Hematology (ASH) in collaboration with ClinGen to develop expert panels. This effort was motivated by the increasing use of genomics in clinical hematology and the lack of resources containing expert interpretation of germline variation. This panel, named the ClinGen Myeloid Malignancy Variant Curation Expert Panel is focused on the curation and annotation of variants in genes associated with familial/inherited risk for myeloid malignancies. Our team consists of expert clinicians, clinical laboratory diagnosticians, and researchers interested in developing and implementing standardized protocols for sequence variant specific annotations of genes in inherited myeloid malignancies. The optimization of the ACMG/AMP guidelines encompasses disease-/gene-informed specifications or strength adjustments of existing rules, including defining gene-specific population frequency cutoffs, and specifying recommendations for the use of computational/predictive data, as supported by published functional and clinical data in addition to guidance on ACMG/AMP variant interpretation provided by the ClinGen effort. Our initial focus has been to organize sub-groups of teams to develop approaches for evaluating ACMG/AMP codes to interpret germline variants of the RUNX1 gene. Once the curation of RUNX1 variants is underway, we will extend our focus to include CEBPA, DDX41, ETV6, and GATA2. These efforts will be bolstered by encouraging submission of existing variant interpretations to ClinVar or other public variant databases by the Hematology community. In summary, the ClinGen Myeloid Malignancy Variant Curation Expert Panel aims to develop recommendations to optimize ACMG/AMP criteria for standardization of variant interpretation in myeloid leukemia genes and make expert-reviewed and interpreted variants available to the hematology community through ClinVar and the ClinGen website (www.clinicalgenome.org) to support patient care and research. Disclosures DiNardo: Karyopharm: Honoraria; Agios: Consultancy; Medimmune: Honoraria; Celgene: Honoraria; Bayer: Honoraria; Abbvie: Honoraria. Nichols:Incyte: Research Funding; Alpine Immune Sciences: Research Funding. Plon:Baylor Genetics: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 25 ( 2015-12-17), p. 2734-2738
    Abstract: Mutations in HSPA9 cause CSAs that may be inherited in a recessive or pseudodominant manner. HSPA9 loss-of-function alleles are often inherited in trans with a common coding single nucleotide polymorphism associated with altered gene expression.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 5002-5002
    Abstract: Purpose: Circulating cell-free DNA in blood may originate from cell necrosis, apoptosis, or NETosis. NETosis is a recently described inflammatory process in which neutrophils release a meshwork of DNA fibers called neutrophil extracellular traps (NETs) to attack microorganisms. Higher levels of cell-free DNA have been observed in patients with sepsis and malignancy, and it may be linked to arterial thrombosis as well. We examined changes in cell-free DNA in infants who experienced acute, iatrogenic thrombosis of the femoral artery after arterial catheterization to better understand the role of cell-free DNA in clot formation. Methods: Plasma samples were collected from infants 〈 1 year of age with congenital heart disease during cardiac catheterization. Post-procedurally, femoral artery thrombus formation at the site of sheath insertion was detected by ultrasound. Cell-free DNA was quantified at two time points (before and after arterial catheterization) in three infants who developed femoral artery thrombus after catheterization and three age-matched controls. Cell-free DNA was also quantified from plasma of normal adults as a comparison. Results: At baseline,cell-free DNA level for the infant cohort was similar to that in normal adults (13.9 ng/mL vs. 10.3 ng/mL, p = 0.20, Figure). After arterial catheterization, cell-free DNA was increased from baseline in all infants (51.0 ng/mL vs. 13.9 ng/ml, p = 0.004). However, infants who developed femoral artery thrombus after catheterization did not demonstrate higher cell-free DNA after arterial injury, compared to the control group (47.1 ng/mL vs. 54.9 ng/ml, p = 0.83). Conclusions: Cell-free DNA is significantly and consistently elevated in infants after arterial catheterization. As part of NETosis, cell-free DNA may serve as an inflammatory mediator in infants who experience arterial injury. We plan to confirm the findings of this pilot study in a larger human infant cohort as well as in a piglet model of vascular injury. Figure Cell-free DNA levels in infants, before and after arterial catheterization, in comparison to normal adults. Figure. Cell-free DNA levels in infants, before and after arterial catheterization, in comparison to normal adults. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 504-504
    Abstract: Abstract 504 The hematopoietic niche supports both normal and malignant hematopoiesis. We have evaluated the functional interactions between leukemic cells and the endothelial cell component of the hematopoietic niche. Highly enriched populations of circulating human acute myeloid leukemia (AML) cells were obtained by therapeutic leukapheresis. These primary AML cells rapidly homed to and associated with pre-existing vascular tubes in vitro. Co-culture of human lung microvascular endothelial cells (HLMVEC) with AML cells both inhibited AML apoptosis by ∼50% (p 〈 0.005) and significantly increased AML cell number (p 〈 0.01), indicating an important supportive effect of the endothelium on AML growth. A direct pro-angiogenic effect of the AML cells was revealed by the induction of vascular tube formation by HLMVECs in co-culture. Screening of known angiogenic factors showed an induction of GCSF expression and an increase in IL-6 levels in AML and HLMVEC co-cultures. Together, these findings indicate a mutually supportive, functional interaction between AML cells and endothelium in vitro. To evaluate the interactions of AML and vascular endothelium in vivo, primary human AML cells were transplanted into NOD/SCID IL2Rγ null mice. In highly engrafted mice ( 〉 50% human AML cells in the bone marrow) we observed leukemic infiltration into the perivascular region of both large and small vessels of the mouse liver, and AML cells were frequently integrated into the vascular endothelium. Confocal microscopy surprisingly revealed the co-expression of human CD45 and the mouse endothelial cell marker CD31. To evaluate these apparently fused leukemia/endothelial cells further, single cell suspensions from the livers of mice engrafted with AML cells were FACS sorted based on the co-expression of human CD33 and mouse CD31. Multiplex PCR analysis of single hCD33+/mCD31+ cells verified the presence of both mouse genes (fah and tspy or D2Mit206) and human genes (flt3 and tty-15). The presence of the patient specific, leukemia-associated Flt3-ITD mutation confirmed that fusion occurs between malignant cells and vascular endothelium. AML and endothelial cell fusion was also confirmed by interphase fluorescent in situ hybridization (FISH) with species specific centromeric probes. In conclusion, the results from this study indicate that the functionally important cross-talk between normal hematopoietic stem/progenitor cells and vascular endothelium extends to malignant hematopoiesis. The fusion of primary AML cells with normal endothelial cells raises the possibility that vascular endothelium may serve as a reservoir for occult leukemia. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...