GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3015-3015
    Abstract: Lymphomas represent nearly 70 distinct diseases with unique clinical presentations, therapeutic responses and underlying biology. There is a pressing shortage of publically available cell line and in vivo models of nearly all of these diseases; T-cell lymphoma models are particularly under-represented compared to B-cell lymphomas, which has severely hampered efforts to understand and target their biology. The majority ofin vivo models of T-cell lymphomas are genetically-engineered mouse models, which often don't faithfully recapitulate human disease. To address this issue, we have established a repository of patient-derived xenografts (PDX) of lymphomas by engrafting human tumors into immunodeficient NOD/Scid/IL2rgnull mice with or without an MHC Class 1 deficiency (to prevent graft versus host disease). Blood and bone marrow specimens involved with tumor were injected by tail vein injection. Lymph node and extranodal biopsy specimens were implanted under the renal capsule as a 1x1x2mm tumor seed, which maintains the in situ microarchitecture. A description of T-cell lymphoma PDXs is included in the Table. PDXs have been extensively characterized by immunohistochemistry (IHC), flow cytometry, transcriptome sequencing and targeted DNA sequencing. These studies have demonstrated retention of key architectural, cellular, and molecular features of the primary tumors. Flow cytometric analysis of patient tumors and their respective xenografts revealed highly concordant patterns of surface marker expression. IHC of murine tissues confirmed retention of tumor immunophenotypes, architecture, and even tissue tropism in the PDXs. For example, blood from a patient with Sézary Syndrome manifested in the skin of recipient mice when injected into the lateral tail vein. A breast implant-associated ALK-negative anaplastic large cell lymphoma (ALCL) implanted under the renal capsule metastasized to the liver and spleen while uniformly retaining CD30 positivity. A peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) specimen implanted under the renal capsule engrafted in the spleen, with the notable admixture of nonmalignant T cells and scattered EBV-positive B cells in first passage. T-cell receptor gene rearrangement PCR performed on this PTCL-NOS demonstrated an identical rearrangement pattern in the primary tumor and the PDX. An angioimmunoblastic T-cell lymphoma (AITL) specimen engrafted in spleen, lymph node and bone marrow within 6 weeks and serially transplanted through three generations in an orthotopic manner while maintaining a CD3+CD4+PD1+CD30partial immunophenotype. The genetic characterization of the PDX models using a targeted DNA sequencing approach showed a mutational profile that clearly matched primary T-cell lymphoma samples and significantly expands the current repertoire of available pre-clinical models. For example, a PDX model of AITL showed mutations of TET2 and ARID1B; a model of an ALK-negative ALCL harbored mutations of STAT3 and STAT5. This massively extends the spectrum of clinically representative model systems that can be used to explore novel therapeutic strategies for T-cell lymphomas. Several early-passage PDXs have been used to generate T-cell lymphoma cells lines, including three cell lines from AITL PDX models. One of these AITL cell lines has proliferated through 30 passages and was validated by immunophenotype and molecular confirmation of bi-allelic TET2 mutations with loss of 6q, 7q, and 10q confirmed using Sanger and TruSeq Custom Amplicon Sequencings. To our knowledge, there have been no reports of an AITL cell line in the literature. Additional peripheral T-cell lymphoma cell lines are currently under development. These lymphomas, along with a spectrum of PDXs of other hematologic malignancies, are available to collaborators through the online portal PRoXe (Public Repository of Xenografts) at www.proxe.org. These models represent a unique opportunity to interrogate biology and perform preclinical studies with in vivo models. Table 1 Table 1. Disclosures Jacobson: Kite: Membership on an entity's Board of Directors or advisory committees. Armand:Pfizer: Research Funding; Sequenta Inc: Research Funding; Merck: Consultancy, Research Funding; Roche: Research Funding; Infinity Pharmaceuticals: Consultancy; Bristol-Myers Squibb: Consultancy, Research Funding. Shipp:Bristol-Myers Squibb: Consultancy, Research Funding; Cell Signaling: Honoraria; Merck, Gilead, Takeda: Other: Scientific Advisory Board; Bayer: Research Funding. Fisher:Pharmacyclics: Consultancy. Weinstock:Novartis: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3713-3713
    Abstract: Approximately 10% of B-ALLs harbor CRLF2 rearrangements, which may portend a poor prognosis. Although these leukemias are addicted to JAK2 signaling, ATP-competitive type I JAK2 inhibitors have limited activity in vitro or in vivo (Weigert et al. J Exp Med 2012). This may result from heterodimerization of JAK2 with other JAK family members (Koppikar et al. Nature 2012). Type II inhibitors bind JAK2 in the inactive conformation, which may overcome this resistance. When assayed in MHH-CALL4 cells harboring a CRLF2/IGH rearrangement and JAK2 I682F mutation, the type II JAK2 inhibitors NVP-BBT594 and NVP-CHZ868 were 10-35-fold more potent than the type I JAK2 inhibitors NVP-BSK805 and NVP-BVB808. Similarly, in Ba/F3 cells dependent on CRLF2 and the gain-of-function allele JAK2 R683G, the IC50 for CHZ868 was 5-20-fold lower than the IC50s for BSK805 and BVB808. Unlike type I inhibitors, which induce paradoxical hyperphosphorylation of JAK2, CHZ868 completely blocks JAK2 and STAT5 phosphorylation. In addition, the JAK2 Y931C allele that confers 4-6-fold resistance to BSK805 and BVB808 did not alter sensitivity to CHZ868. CHZ868 abrogates STAT5 phosphorylation in Ba/F3 cells expressing CRLF2 with JAK2 R683G/Y931C while BVB808 does not. CHZ868 is the first type II JAK2 inhibitor amenable to in vivo use. We assessed its efficacy in mice transplanted with transgenic (CRLF2/JAK2 R683G/Cdkn2a-/- or CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr) or primary human CRLF2-rearranged B-ALLs. Splenocytes from patient-derived xenografts (PDXs) treated with CHZ868 in vivo for 3 days are more primed for apoptosis as demonstrated by a 2-6-fold EC50 reduction for PUMA permeabilizing activity compared to vehicle. Transcriptional profiling of splenocytes from CHZ868-treated PDXs revealed downregulation of critical survival pathways including E2F1, STAT3, and AKT-mediated signaling. Of note, 2 of the most downregulated genes are STAT targets, PIM1 and Myc. Mice treated for 5-6 days with CHZ868 had significant reductions in spleen size and complete loss of phospho-STAT5 in residual leukemia cells. In both murine leukemias and human xenografts, CHZ868 prolonged survival compared to controls (p 〈 0.001). BH3 profiling of splenocytes from PDXs treated until moribund showed a 2-4-fold increase in the EC50 for BIM compared to vehicle, consistent with decreased priming for apoptosis in the relapsed setting. To study mechanisms of resistance to type II JAK2 inhibitors, we screened a randomly mutagenized JAK2 R683G library expressed in Ba/F3-CRLF2 cells for clones resistant to BBT594. All 〉 30 clones sequenced harbored the same JAK2 L884P mutation. Ba/F3 cells expressing CRLF2 with JAK2 R683G/L884P displayed cross-resistance to CHZ868, while sensitivity to type I inhibitors was not affected. Structural modeling of the JAK2 JH1 domain suggested that L884P alters the binding pocket for type II inhibitors. JAK2 L884P is homologous to an EGFR L747P activating mutation, which destabilizes the P-loop and C-helix portion of the kinase domain (He et al. Clin Cancer Res 2012). The fact that L884P was reported in two B-ALL patients lacking additional JAK2 mutations (Torra et al. Blood (ASH Annual Meeting Abstracts) 2010) raised the possibility it was also an activating mutation. We confirmed L884P is an activating allele, as Ba/F3 cells expressing CRLF2, IL7R, and JAK2 L884P proliferated in the absence of TSLP ligand. To improve CHZ868 efficacy, we tested for synergy with multiple chemotherapy agents currently used in B-ALL treatment. Dexamethasone was the most highly synergistic with CHZ868 in MHH-CALL4 cells. To assess the combination in vivo, we treated mice transplanted with CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr murine B-ALL with vehicle, CHZ868, dexamethasone, or CHZ868 + dexamethasone for 14 days post engraftment. CHZ868 treatment prolonged survival compared to vehicle (p 〈 0.0001) or dexamethasone (p 〈 0.01), and the combination prolonged survival beyond CHZ868 monotherapy (p 〈 0.0001). In summary, the type II JAK2 inhibitor CHZ868 potently kills JAK2-dependent B-ALL and overcomes genetic resistance to type I inhibitors. CHZ868 prolongs survival in murine transgenic and human xenograft models and synergizes with dexamethasone in vivo. Thus, combination strategies using dexamethasone with type II JAK2 inhibitors merit testing in patients with relapsed or refractory JAK2-dependent B-ALL. Disclosures Hofmann: Novartis Institutes for BioMedical Research: Employment. Baffert:Novartis: Employment. Vangrevelinghe:Novartis Institutes for BioMedical Research: Employment. Gaul:Novartis: Employment. Radimerski:Novartis: Employment. Weinstock:Novartis: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1686-1686
    Abstract: Mantle cell lymphoma (MCL) makes up approximately 6% of non-Hodgkin’s lymphoma cases and has an aggressive disease course with a particularly poor outcome. To date there is no standard treatment and despite good initial response to chemotherapy, most patients relapse with long-term survival achieved in less than 40%. In almost all cases, MCL is distinguished by overexpression of Cyclin D1 (CCND1) usually caused by a translocation between chromosomes 11 and 14. Both CCND1 and BTK are known clients of heat shock protein 90 (HSP90). In previous studies, we demonstrated potent cytotoxic activity of second- (NVP-AUY922, PU-H71) and third-generation (NVP-HSP990) HSP90 inhibitors against the MCL cell lines Granta519, JeKo1, MAVER1, Rec1, and Z-138 (IC50s for AUY922, 3-11nM; HSP990, 5-24nM; PU-H71, 40-287 nM). Immunobloting of MCL cell lines exposed to 50nM AUY922 demonstrated reduced expression of client proteins CCND1, CDK4 and AKT and induction of G0/G1 cell cycle arrest within 6-8h followed by apoptosis within 27h. We now demonstrate that combining Ibrutinib with AU922 results in synergistic or additive effects in all lines except for the highly Ibrutinib- sensitive JEKO-1. In fact, AUY922 overcame ibrutinib-resistance due to activation of non B-cell receptor (BCR)-driven alternative NFkB signaling in Granta519 and Z-138 cells. Due to the promising results of AUY922 we conducted two in vivo studies. Current mouse MCL models are generated by injecting MCL cell lines in matrigel subcutaneously. The MCL grows as a solid tumor and treatment is typically initiated when mean tumor volume is approximately 200 mm3. First, we xenografted luciferized MAVER1 (ibrutinib-sensitive) and Z-138 (ibrutinib-resistant) cells into SCID beige mice (10 million cells per mouse). Mice were randomized to receive either AUY922 (50 mg/kg by tail vein injection thrice weekly) or vehicle. Tumors analyzed from mice sacrificed after 5 days of treatment showed complete loss of cyclin D1 and Ki67 staining by immunohistochemistry in those receiving AUY922. Tumor growth was significantly slowed in AUY922 treated animals in both lines, which translated into a survival advantage (p 〈 0.01) for both lines. To advance beyond xenografting of cell lines, we generated a MCL patient-derived xenograft (PDX) model. Peripheral blood from a patient with relapsed MCL and peripheral blood involvement was xenografted by tail-vein injection. Within 28 days, fatal MCL developed in the spleen and bone marrow as evidenced by flow cytometry, but was also seen in liver and intestines. Xenografted splenocytes were secondarily transplanted into NSG mice. Eighteen days after injection, mice were randomized to receive either AUY922 (50 mg/kg by tail vein injection thrice weekly) or vehicle. After the third dose, mice underwent [18F]-FLT PET imaging. Vehicle mice had PET-avid disease diffusely within lymph nodes, spleen, bone marrow and intestine. Mice treated with 5 days of AUY922 had nearly complete resolution of PET activity in lymph nodes, spleen and bone marrow, as well as approximately 50% reduction in the intestines. Mice were euthanized and immunobloting of the spleens showed pronounced downregulation of both CCND1 and BTK in AUY922-treated mice compared with vehicle. In conclusion, newer-generation HSP90 inhibitors such as AUY922 have significant single-agent activity across a genetically diverse spectrum of MCLs, can target cyclin D1, CDK4, and BTK, and may overcome Ibrutinib resistance. Disclosures Weinstock: Novartis: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3797-3797
    Abstract: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive acute leukemia/lymphoma recently classified as a malignant transformation of plasmacytoid dendritic cells (pDCs) and a subtype of acute myeloid leukemia (AML). BPDCN has no standard treatment and a poor prognosis, with median survival 〈 1 year. A significant roadblock to better understanding BPDCN is a lack of adequate model systems. We generated patient-derived xenografts (PDX) of BPDCN in NOD/Scid/IL2rgnull (NSG) mice. Bone marrow or peripheral blood cells involved by BPDCN blasts (CD45 low, CD123 high, HLA-DR high, CD3 neg) were transplanted into irradiated NSG recipients. Nine of 16 BPDCNs caused lethal leukemia involving blood, spleen, and bone marrow 2-6 months after transplantation. All nine BPDCN PDXs were serially transplantable. Flow characterization of each patient's BPDCN and corresponding xenograft revealed no major differences in BDCA2, BDCA4, FCeR1, ILT7, or cytoplasmic TCL1 staining. All samples maintained high expression of the human interleukin-3 (IL3) receptor (IL3Ralpha/CD123), a hallmark feature of BPDCN. To further characterize BPDCN pathogenesis we performed whole transcriptome sequencing (RNA-seq) on sorted blasts from 11 patients and on normal pDCs isolated from 4 healthy donors. These were compared to RNA-seq in six PDXs. The spectrum of mutations in BPDCN transcriptomes overlapped with that seen in other hematologic malignancies, particularly myeloid disorders, and was similar to reported DNA mutations in BPDCN, including in ASXL1, CTCF, IDH2, NRAS, RUNX1, STAG2, TET2, and TP53. Particularly striking was the presence of a canonical mutation in an RNA splicing factor in 7 of 11 cases (SRSF2 P95H/L/R in four, ZRSR2 R295* and gene locus deletion in two, and SF3B1 K666N in one). Known oncogenic mutations in the original disease were retained in the PDXs, including all splicing factor mutations, with the exception of an IDH2 R140Q that was lost in one PDX. BPDCN PDXs grouped together in unsupervised clustering of expression profiles, distinct from AML and ALL PDXs in an analysis of 134 models from the DFCI Public Repository of Xenografts (http://PRoXe.org). Gene set enrichment analysis (GSEA) of KEGG and REACTOME pathways associated with differentially expressed genes between primary BPDCNs and non-malignant pDCs revealed signatures related to dendritic cell activation, cell cycle, and apoptosis. In addition, 3 of the top 11 sets were genes involved in mRNA processing, mRNA splicing, and processing capped intron-containing pre-mRNAs (all FDR 〈 1e-6). To test the efficacy of BPDCN-targeted therapy using primary human leukemias in vivo, we performed a pre-clinical trial in NSG mice using SL-401, a recombinant biologic consisting of a fusion protein of IL3 and diphtheria toxin. Three independent BPDCN xenografts were injected into 20 NSG mice each, and followed by weekly peripheral blood monitoring for human CD45 and CD123. When leukemia burden reached 〉 0.5% in at least half of the mice in the cohort, animals were randomized to receive SL-401 at 100 ug/kg or vehicle intraperitoneally daily for 5 days. Two mice in each group were sacrificed at day 7 for response assessment, and peripheral blood was followed weekly in the remaining mice for evidence of progression ( 〉 5% human CD45/CD123-positive cells). 7 days after treatment, mice receiving SL-401 had dramatic reductions in BPDCN in the peripheral blood, spleen, and bone marrow (0.31% vs 37.6% in marrow of SL-401 vs vehicle). SL-401 prolonged progression-free survival in all BPDCNs tested (12 vs 48 days, P 〈 0.0001 by log-rank test). At the time of progression after SL-401, relapsing mice were re-randomized to receive a 2nd and in some cases 3rd cycle of SL-401 or vehicle. Repeated treatment in mice that progressed after SL-401 resulted in second and third peripheral blood remissions. All PDXs responded to SL-401 including those with and without splicing factor and TP53 mutations. CD123 expression was maintained at high levels on all SL-401 treated BPDCNs even after repeated cycles. Primary xenografts of BPDCN are faithful models of the human disease, maintain genetic and transcriptomic characteristics of the original tumor, and respond to multiple courses of IL3-DT in vivo, suggesting that they provide a valuable resource to study disease biology and response/resistance to targeted therapy. Disclosures Chen: Stemline Therapeutics, Inc.: Employment. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Lane:Stemline Therapeutics, Inc.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 21 ( 2016-11-24), p. 2517-2526
    Abstract: Inhibition of HSP90 targets multiple dependences in mantle cell lymphoma. Clinically available HSP90 inhibitors overcome ibrutinib resistance in vitro and in vivo.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3252-3252
    Abstract: To expedite the translation of biologic discoveries into novel therapeutics, there is a pressing need for panels of in vivo models that capture the molecular complexity of human disease. While traditional cell lines and genetically engineered mouse models are useful tools, they are insufficient to assess the broad diversity of human tumors within a context that recapitulates in situ biology. Patient-derived xenografts (PDXs), generated by transplanting primary human tumor cells into immune-deficient NOD.Cg-Prkdcscid/Il2rgtm1Wjl/SzJ (NSG) mice, surmount some of the limitations of these traditional platforms and have been increasingly utilized as tools for preclinical investigation. However, the infrastructure required to generate, bank, and characterize PDX models limits their availability to only a few investigators. To address this issue, we established a repository of PDX models of leukemia and lymphoma, which we have named the Public Repository of Xenografts (PRoXe). At the time of this writing, PRoXe contains 213 independent lines that have been passaged through mice once (P0), 123 of which have been repassaged in a second generation (P1) or further repassaged. The repository encompasses AML, B- and T-ALL, and B- and T-cell non-Hodgkin lymphoma (NHL) across a range of cytogenetic- and molecularly-defined subtypes (Table 1). PRoXe is extensively annotated with patient-level information, including demographics, phase of treatment, prior therapies, tumor immunophenotye, cytogenetics, and molecular diagnostics. PDX lines available for distribution are characterized by immunophenotyping, whole transcriptome sequencing (RNAseq), and targeted exon sequencing of ~300 genes. To confirm fidelity of engrafted tumors to their corresponding clinical samples, lymphomas were morphologically assessed in P0 mice by H & E and, when pathologic adjudication was required, by immunohistochemistry. Xenografted leukemias were compared to their original tumors immunophenotypically. Unsupervised hierarchical clustering was performed on 132 of these lines based on transcriptome sequencing data and demonstrated 94% concordance between classification of the PDX lines by RNA expression and by the annotated clinical-pathologic diagnoses. Discordant cases highlighted unusual variants, such as B-ALL with aberrant expression of myeloid markers and a follicular lymphoma that underwent blastic transformation in the mouse. Multiple lines have been luciferized and confirmed to home to bone marrow, spleen, and liver. Existing lines from PRoXe have already been shared with more than ten academic laboratories and multiple industrial partners. All of the data referenced here are freely available through a customized web-based search application at http://proxe.org, and lines can be requested for in vitro or in vivo experiments. We are actively expanding the size of PRoXe to allow for large pre-clinical studies that are powered to detect differences across genetically defined subsets. Thus, we are happy to host additional lines from outside investigators on PRoXe and thereby expand the availability of these valuable reagents. Finally, we have made the source code for PRoXe (in R Shiny) open-access, so that other investigators can establish their own portals. Table 1. WHO diagnostic entities encompassed within PRoXe at P1 or later, or P0 or later for B-ALLs. WHO Classification - number of lines per diagnostic entity AML, Other Myeloid, and Ambiguous Lineage [n=32] ALL [n=107] AML - recurrent gene mutations 6 B-ALL - NOS 44 AML - MDS-related changes 5 B-ALL - MLL-rearranged 11 AML - NOS 4 B-ALL - BCR-ABL 10 AML - MLLT3-MLL 2 B-ALL - hyperdiploidy 9 Acute myelomonocytic leukemia 1 B-ALL - TEL-AML1 8 Acute monocytic leukemia 1 B-ALL - E2A-PBX1 3 AML unable to classify 2 B-ALL unable to classify 1 Blastic plasmacytoid dendritic cell neoplasm 8 T-ALL 21 Mixed phenotype, MLL rearranged 1 B/myeloid acute leukemia 1 Myelodysplastic syndrome 1 Mature B cell neoplasms[n=11] Mature T and NK cell neoplasms [n=4] DBLCL - NOS 4 Angioimmunoblastic T-cell lymphoma 1 Mantle cell lymphoma 3 Adult T-cell leukemia/lymphoma 1 Extranodal marginal zone lymphoma 1 Extranodal NK/T-cell lymphoma 1 B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL 3 SŽzary syndrome 1 Disclosures Konopleva: Novartis: Research Funding; AbbVie: Research Funding; Stemline: Research Funding; Calithera: Research Funding; Threshold: Research Funding. Etchin:Karyopharm: Research Funding. Lane:Stemline Therapeutics, Inc.: Research Funding. Stone:Abbvie: Consultancy; Novartis: Research Funding; Celator: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Agios: Consultancy; Sunesis: Consultancy, Other: DSMB for clinical trial; Merck: Consultancy; Karyopharm: Consultancy; Roche/Genetech: Consultancy; Pfizer: Consultancy; AROG: Consultancy; Juno: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 4001-4001
    Abstract: Lymphomas represent nearly 70 distinct diseases with unique clinical presentations, therapeutic responses and underlying biology. There is a pressing shortage of publically available cell line and in vivo models of nearly all of these diseases, which has severely hampered efforts to understand and target their biology. To address this issue, we have established a repository of patient-derived xenografts (PDX) of lymphomas by engrafting human tumors into immunodeficient NOD/SCID/IL2rgnull (NSG) mice. These lymphomas, along with a spectrum of other PDXs of hematologic malignancies, are available to collaborators through the online portal PRoXe (Public Repository of Xenografts) at http://PRoXe.org. Blood and bone marrow specimens involved with tumor are injected by tail vein (IV) injection. Lymph node and extranodal biopsy specimens are implanted under the renal capsule as a 1x1x2mm tumor seed (renal), which maintains the in situ microarchitecture. A full description of xenografted lymphomas is included in the Table. Table 1.DiseaseType of implant# in 1st passage# in 2nd passage or higherT-cell prolymphocytic leukemiaIV1Angioimmunoblastic T-cell lymphomaIV11Mantle cell lymphomaIV12Double-hit DLBCLIV2Sézary SyndromeIV1Adult T-cell Leukemia/LymphomaIV1Diffuse large B cell lymphomaIV2Diffuse large B cell lymphomarenal2Marginal zone lymphomarenal11NK/T-cell lymphomarenal1Peripheral T-cell lymphoma-NOSrenal1Breast implant-associated anaplastic large cell lymphomarenal1 Engrafted PDXs have been extensively characterized by immunohistochemistry, flow cytometry, transcriptome sequencing and targeted DNA sequencing. Flow cytometric analysis of patient tumors and their respective xenografts consistently revealed highly concordant immunophenotypes compared to the original tumors. Similarly, immunohistochemistry of involved tissues confirmed retention of tumor immunophenotypes, architecture, and even tissue tropism in the PDXs. Examples include a Sézary syndrome PDX that was injected by tail vein and trafficked to spleen, bone marrow, blood and skin, a diffuse large B-cell lymphoma (DLBCL) PDX that infiltrated the CNS, and a second DLBCL PDX that was implanted into the renal capsule of the left kidney and progressed within 8 weeks to bilateral renal involvement. Other notable models include a breast implant-associated, ALK-negative anaplastic large cell lymphoma implanted under the renal capsule that metastasized to the liver and spleen while uniformly retaining CD30 positivity. Two double-hit lymphoma (DHL) PDXs maintained their CD20-negative phenotype through serial passage to P1. A peripheral T-cell lymphoma-NOS (PTCL) specimen implanted under the renal capsule engrafted in the spleen, with a notable admixture of nonmalignant T cells and scattered EBV-positive B cells. T-cell receptor gene rearrangement PCR performed on this PTCL demonstrated an identical rearrangement pattern in the primary tumor and the PDX. Luciferized mantle cell lymphoma and DHL PDXs clearly home to bone marrow, lymph nodes, spleen, and liver as early as two weeks after injection. These findings support the utility of these PDX lines as in vivo models that more accurately recapitulate the human disease than commonly used subcutaneous cell line models. In addition to generating PDXs that remain faithful to their source tumors, we have witnessed interesting examples of in vivo histologic transformation, opening the door to studies of disease progression. One primary follicular lymphoma specimen injected into a cohort of mice transformed to DLBCL in one mouse and a lymphoblastic lymphoma-like disease in another mouse, as confirmed by IHC and flow cytometry. Further xenografting of primary tumors is underway with the goal of establishing a large repository of lymphoma PDXs useful for biologic interrogation and preclinical trials. Disclosures Davids: Genentech: Other: ad board; Pharmacyclics: Consultancy; Janssen: Consultancy. Shipp:Gilead: Consultancy; Sanofi: Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...