GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (5)
  • 1
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 9203-9204
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 387-387
    Abstract: Introduction: Current studies demonstrate an involvement of germline predispositions in the development of approximately 5% of childhood leukemias (Zhang J et al.,N Engl J Med, 2015), although their actual contribution is believed to be much higher. Being able to understand tumor evolution starting from a predisposed cell, opens up a new avenue in the form of disease prevention rather than treatment. Here, we present a novel finding of a double hit - one pathway scenario, in which a rare (MAF 〈 0.01) germline JAK2 variant (G571S), inherited paternally, and a newly described germline STAT3 variant (K370R), transmitted from the mother's side, act synergistically to induce Ph-like B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Methods: WES was carried out to identify predisposing germline variants. The cooperative functionality of the di-genic candidate mutations was experimentally tested using BaF3 oncogenic transformation assays, western blot and cell cycle analyses. In addition, we used structural homology calculations to visualize the cooperative impact of both mutations. Results: Utilizing Trio-calling based on WES we identified two concomitant germline SNVs in the JAK2/STAT3 pathway in a boy affected with BCP-ALL. The JAK2 variant, rs139504737, leads to an amino acid substitution from Glycine to Serine (p.G571S) (MAF 〈 0.01). The second variant constitutes an extremely rare and so far for leukemia undescribed missense mutation in the STAT3 gene (c.1109A 〉 G), causing an exchange of Lysine to Arginine (p.K370R). Structural modeling of STAT3 K370R showed that K370, which is an important site for acetylation, is located in a loop adjacent to the DNA binding site of STAT3. The substitution of Lys to Arg at position 370 leads to a strengthening of the beta-sheet due to simultaneous interaction of Arg with both E455 and E442. Moreover, in contrast to Lys, Arg cannot be acetylated, leading to a constitutively non-acetylated form of STAT3. JAK2 G571S on the other hand has a unique position affecting amino acid 571, which lies adjacent to the Y570 residue that downregulates kinase activity via autophosphorylation, indicating a potential functional mechanism of the G571S mutation by inhibiting Y570-directed negative feedback. To assess the cooperative oncogenic transforming potential of both variants, BaF3 depletion assays were carried out. In BaF3/CRLF2-IL-7Rwt cells, JAK2 G571S conferred IL-3 independent growth at similar rates as the well-known oncogenic JAK2 V617F mutation. Moreover, the combination of both JAK2 G571S and STAT3 K370R further increased the growth advantage significantly starting 2 days after IL-3 withdrawal (p=0.0226). Western Blot analyses revealed increased pSTAT5 levels, as well as high pSTAT-3 levels in the double mutant cells. We further observed that STAT3 K370R alone changed the phenotype of the in-vitro culture, with an accumulation of enlarged BaF3 cells. Surprisingly, this phenotype was reversed in cells expressing both STAT3 K370R and JAK2 G571S. Cell cycle analysis showed a significant increase of aneuploid cells (G2/M) (p=0.0009), while the G-1 phase was significantly decreased (p=0.0031) in STAT3 K370R expressing BaF3 cells compared to STAT3 WT cells. Again, this phenotype was drastically reduced in cells transfected with both mutations simultaneously (G1 phase p=0.0026; G2/M p=0.0032). Western Blot analyses confirmed increased p-CDC-2, p-Cyclin/Cyclin-B1, and Cyclin-A2 levels in BaF3 cells harboring both variants, suggesting that the cell cycle arrest observed in cells expressing STAT3 K370R is rescued by JAK2 G571S expression by enabling re-entering of the M-Phase. The link between the oncogenic capacity of JAK2 G571S and leukemia could further be strengthened by the identification of an additional B-precursor ALL patient from an independent family harboring the same JAK2 G571S germline mutation. The patient belongs to a previously described DS-ALL cohort (Bercovich D. et al., Lancet, 2008). In this patient with Down syndrome, we did neither identify the STAT3 K370R mutation nor CRLF2 activation. Thus, we hypothesize that the germline JAK2 G571S in combination with the constitutional trisomy 21 act in synergy. Conclusion: Taken together, we present evidence of an oncogenic potential of germline JAK2 G571S, which is significantly increased through additional expression of STAT3 K370R in a double-hit one-pathway scenario. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2018
    In:  Blood Vol. 132, No. Supplement 1 ( 2018-11-29), p. 4093-4093
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 4093-4093
    Abstract: Pediatric acute lymphoblastic leukemia (ALL) is characterized by recurrent chromosomal translocations. The translocation t(1;19) that fuses the gene encoding the basic helix-loop-helix transcription factor TCF3 with the gene encoding the homeodomain protein PBX1 is the second most common one occurring in approximately 5-10% of precursor B ALL cases. Backtracking of clonotypic TCF3-PBX1 translocations that were identified in leukemia patients by PCR amplification of Guthrie cards from these individuals provided weak evidence for a prenatal origin of a minority of TCF3-PBX1 translocations (2 of 15 cases). The presence of N-nucleotides at the recombination junction, IGH rearrangements and the specific JH and DH segment usage indirectly supported a postnatal origin of the majority of translocations, but could not definitely date the fusion event during development (Wiemels et al. PNAS 2002). We recently developed a novel, DNA-based screening technique (genomic inverse PCR for exploration of ligated breakpoints, GIPFEL) for the detection of translocations without prior knowledge of the exact breakpoint (Fueller et al. PLOS ONE 2015). By GIPFEL screening of 1,000 umbilical cord blood samples, we confirmed a high prevalence (≥5%) of the most frequent ALL associated translocation, t(12;21), in healthy newborns (Schaefer et al. BLOOD 2018). This translocation was 500-fold more frequent than the corresponding leukemia incidence (1/10,000) indicating a low penetrance of the leukemic fusion and a greater importance of secondary oncogenic events. In order to trace the origin of the TCF3-PBX1 fusion and to assess the risk of children bearing the translocation to develop leukemia, we collected 340 cord blood samples of healthy newborns and subjected them to GIPFEL screening. The GIPFEL technique uses stable DNA as a sample and detects a translocation by inverse PCR after restriction enzyme digest of the DNA and circularization of fragments by ligation. For t(1;19) screening, DNA was isolated from CD19+ enriched mononuclear cells, digested with the enzyme MfeI and ligated. Remaining linear DNA fragments were removed by exonuclease digest. After ethanol precipitation of the DNA circles a partially multiplexed, semi-nested PCR was carried out to quantify all possible ligation/junction products specific for the translocation. Samples that screened positive underwent one further demultiplexed PCR, agarose gel electrophoresis and Sanger sequencing to validate the result. An internal PBX1 genomic ligation product served as a positive control. TCF3-PBX1 positive cells at a frequency ≥10-4 to 10-5 would be detected by the GIPFEL method. Of the 340 screened cord bloods, 292 are currently undergoing evaluation and 48 are validated. So far, none of the 48 samples was positive for the TCF3-PBX1 translocation. In case all 340 cord bloods are negative, the result could suggest that TCF3-PBX1 translocations occur very rarely prenatally and that they have a high oncogenic penetrance if they arise in utero, although cooperating secondary mutations are clearly necessary. This would be in line with the strong capability of the TCF3-PBX1 oncoprotein to transform many cell types in vitro and with the generation of diverse (although late occurring) tumors observed in TCF3-PBX1 transgenic mice (reviewed in Aspland et al. Oncogene 2001). These results would support the previous finding of clonotypic TCF3-PBX1 transcripts in 2 of 15 Guthrie cards derived from individuals who later developed leukemia (Wiemels et al. PNAS 2002). Complete results of GIPFEL screening of 340 newborns will be available and presented at the conference. Although the number of healthy newborns investigated is still low, these results will help to determine the origin of the t(1;19) TCF3-PBX1 fusion. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 98, No. 7 ( 2001-10-01), p. 2272-2274
    Abstract: Childhood acute lymphoblastic leukemia (ALL) is frequently initiated in utero at a time of developmentally regulated insertion of N regions into the DJH rearrangements of immunoglobulin heavy-chain (IgH) genes. Here it is shown that N regions are present in the clonotypic DJH rearrangements in 11 of 12 infant ALLs with t(4;11). These data are compared with the 122 previously published DJH sequences and were found to have a pattern similar to that of ALL in children older than 3 years at diagnosis but were unlike that in children younger than 3 years who predominantly lack N regions. These findings, therefore, indicate that t(4;11)-positive infant ALL is initiated later in fetal development than most B-cell precursor ALL from children younger than 3 years and that they have a shorter latency period already in utero.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2001
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 134, No. 16 ( 2019-10-17), p. 1355-1358
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...