GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Clinical Oncology (ASCO)  (2)
Material
Publisher
  • American Society of Clinical Oncology (ASCO)  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2009
    In:  Journal of Clinical Oncology Vol. 27, No. 15_suppl ( 2009-05-20), p. e22189-e22189
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 27, No. 15_suppl ( 2009-05-20), p. e22189-e22189
    Abstract: e22189 Background: Recent evidence suggests that estrogen signaling is important in the progression of cancers expressing estrogen receptors (ERs) and may also be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In view of a possible functional interaction between the ER and the epidermal growth factor receptor (EGFR) pathways in NSCLC, we investigated the dual inhibition of aromatase and EGFR in NSCLC cell lines. Methods: In the current study we used exemestane, an irreversible steroidal aromatase inactivator, and erlotinib, an EGFR tyrosine kinase inhibitor. The in vitroexperiments were performed using H23 and A549, two NSCLC cell lines with low and high levels of aromatase, respectively. Cell proliferation was measured by MTT assay. Metalloproteinase (MMP) levels were detected by zymography and cell migration was determined by boyden chamber assay. EGFR protein levels detection was performed by immunofluorescense assay. Results: Exemestane and erlotinib inhibited H23 and A549 cell proliferation either alone or in combination, 48 hours after their application. However, the combination of exemestane and erlotinib was more effective than each agent alone, in H23 cells. Furthermore, exemestane decreased MMP-2 and MMP- 9 levels in H23 cells, whereas erlotinib did not. The combination of exemestane and erlotinib had the same effect on MMPs, as exemestane alone. The effect on cell migration was in line with the results in MMPs levels. In A549 cells, no changes in MMPs levels or cell migration were demonstrated. In addition, exemestane altered the location of EGFR protein in H23 cells, but not in A549 cells. Conclusions: Our findings suggest an antiproliferative effect of exemestane and erlotinib in both cell lines, as well as synergy for the combination in H23 cells. The activity of the combination in these cells with low levels of aromatase might involve an additional effect of exemestane on EGFR protein location. Erlotinib did not enhance the effect of exemestane on MMPs secretion and migration in H23 cells. No significant financial relationships to disclose.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2009
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2010
    In:  Journal of Clinical Oncology Vol. 28, No. 15_suppl ( 2010-05-20), p. e12527-e12527
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 28, No. 15_suppl ( 2010-05-20), p. e12527-e12527
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2010
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...