GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (3)
  • 1
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 188, No. 23 ( 2006-12), p. 8222-8230
    Abstract: Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Infection and Immunity, American Society for Microbiology, Vol. 74, No. 1 ( 2006-01), p. 108-117
    Abstract: Pathogenic Brucella species replicate within mammalian cells, and their type IV secretion system is essential for intracellular survival and replication. The options for biochemical studies on the Brucella secretion system are limited due to the rigidity of the cells and biosafety concerns, which preclude large-scale cell culture and fractionation. To overcome these problems, we heterologously expressed the Brucella suis virB operon in the closely related α 2 -proteobacterium Agrobacterium tumefaciens and showed that the VirB proteins assembled into a complex. Eight of the twelve VirB proteins were detected in the membranes of the heterologous host with specific antisera. Cross-linking indicated protein-protein interactions similar to those in other type IV secretion systems, and the results of immunofluorescence analysis supported the formation of VirB protein complexes in the cell envelope. Production of a subset of the B. suis VirB proteins (VirB3-VirB12) in A. tumefaciens strongly increased its ability to receive IncQ plasmid pLS1 in conjugation experiments, and production of VirB1 further enhanced the conjugation efficiency. Plasmid recipient competence correlated with periplasmic leakage and the detergent sensitivity of A. tumefaciens , suggesting a weakening of the cell envelope. Heterologous expression thus permits biochemical characterization of B. suis type IV secretion system assembly.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2014
    In:  Genome Announcements Vol. 2, No. 2 ( 2014-05)
    In: Genome Announcements, American Society for Microbiology, Vol. 2, No. 2 ( 2014-05)
    Abstract: We have sequenced the complete genome of the plant pathogen Agrobacterium tumefaciens strain LBA4213, a derivative of the wild-type strain A. tumefaciens Ach5 and the ancestor of A. tumefaciens strain LBA4404 used in genetic engineering. The genome consists of a circular chromosome and a linear chromosome, as well as a megaplasmid and a tumor-inducing plasmid.
    Type of Medium: Online Resource
    ISSN: 2169-8287
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 2968655-6
    detail.hit.zdb_id: 2704277-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...