GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2000
    In:  Applied and Environmental Microbiology Vol. 66, No. 9 ( 2000-09), p. 3705-3710
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 66, No. 9 ( 2000-09), p. 3705-3710
    Abstract: Pseudomonas oleovorans is capable of producing poly(3-hydroxyalkanoates) (PHAs) as intracellular storage material. To analyze the possible involvement of phaD in medium-chain-length (MCL) PHA biosynthesis, we generated a phaD knockout mutant by homologous recombination. Upon disruption of the phaD gene, MCL PHA polymer accumulation was decreased. The PHA granule size was reduced, and the number of granules inside the cell was increased. Furthermore, mutant cells appeared to be smaller than wild-type cells. Investigation of MCL PHA granules revealed that the pattern of granule-associated proteins was changed and that the predominant protein PhaI was missing in the mutant. Complementation of the mutant with a phaD -harboring plasmid partially restored the wild-type characteristics of MCL PHA production and fully restored the granule and cell sizes. Furthermore, PhaI was attached to the granules of the complemented mutant. These results indicate that the phaD gene encodes a protein which plays an important role in MCL PHA biosynthesis. However, although its main effect seems to be the stabilization of MCL PHA granules, we found that the PhaD protein is not a major granule-associated protein and therefore might act by an unknown mechanism involving the PhaI protein.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2000
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2005
    In:  Applied and Environmental Microbiology Vol. 71, No. 4 ( 2005-04), p. 2046-2052
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 71, No. 4 ( 2005-04), p. 2046-2052
    Abstract: Pseudomonas putida CA-3 is capable of converting the aromatic hydrocarbon styrene, its metabolite phenylacetic acid, and glucose into polyhydroxyalkanoate (PHA) when a limiting concentration of nitrogen (as sodium ammonium phosphate) is supplied to the growth medium. PHA accumulation occurs to a low level when the nitrogen concentration drops below 26.8 mg/liter and increases rapidly once the nitrogen is no longer detectable in the growth medium. The depletion of nitrogen and the onset of PHA accumulation coincided with a decrease in the rate of substrate utilization and biochemical activity of whole cells grown on styrene, phenylacetic acid, and glucose. However, the efficiency of carbon conversion to PHA dramatically increased once the nitrogen concentration dropped below 26.8 mg/liter in the growth medium. When supplied with 67 mg of nitrogen/liter, the carbon-to-nitrogen (C:N) ratios that result in a maximum yield of PHA (grams of PHA per gram of carbon) for styrene, phenylacetic acid, and glucose are 28:1, 21:1, and 18:1, respectively. In cells grown on styrene and phenylacetic acid, decreasing the carbon-to-nitrogen ratio below 28:1 and 21:1, respectively, by increasing the nitrogen concentration and using a fixed carbon concentration leads to lower levels of PHA per cell and lower levels of PHA per batch of cells. Increasing the carbon-to-nitrogen ratio above 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, by decreasing the nitrogen concentration and using a fixed carbon concentration increases the level of PHA per cell but results in a lower level of PHA per batch of cells. Increasing the carbon and nitrogen concentrations but maintaining the carbon-to-nitrogen ratio of 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, results in an increase in the total PHA per batch of cells. The maximum yields for PHA from styrene, phenylacetic acid, and glucose are 0.11, 0.17, and 0.22 g of PHA per g of carbon, respectively.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...