GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (11)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2010
    In:  Journal of Virology Vol. 84, No. 9 ( 2010-05), p. 4183-4193
    In: Journal of Virology, American Society for Microbiology, Vol. 84, No. 9 ( 2010-05), p. 4183-4193
    Abstract: Measles is a highly contagious human disease caused by measles virus (MeV) and remains the leading cause of death in children, particularly in developing countries. Wild-type MeV preferentially infects lymphocytes by using signaling lymphocytic activation molecule (SLAM), whose expression is restricted to hematopoietic cells, as a receptor. MeV also infects other epithelial and neuronal cells that do not express SLAM and causes pneumonia and diarrhea and, sometimes, serious symptoms such as measles encephalitis and subacute sclerosing panencephalitis. The discrepancy between the tissue tropism of MeV and the distribution of SLAM-positive cells suggests that there are unknown receptors other than SLAM for MeV. Here we identified CD147/EMMPRIN (extracellular matrix metalloproteinase inducer), a transmembrane glycoprotein, which acts as a receptor for MeV on epithelial cells. Furthermore, we found the incorporation of cyclophilin B (CypB), a cellular ligand for CD147, in MeV virions, and showed that inhibition of CypB incorporation significantly attenuated SLAM-independent infection on epithelial cells, while it had no effect on SLAM-dependent infection. To date, MeV infection was considered to be triggered by binding of its hemagglutinin (H) protein and cellular receptors. Our present study, however, indicates that MeV infection also occurs via CD147 and virion-associated CypB, independently of MeV H. Since CD147 is expressed in a variety of cells, including epithelial and neuronal cells, this molecule possibly functions as an entry receptor for MeV in SLAM-negative cells. This is the first report among members of the Mononegavirales that CD147 is used as a virus entry receptor via incorporated CypB in the virions.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Journal of Virology Vol. 87, No. 21 ( 2013-11), p. 11684-11692
    In: Journal of Virology, American Society for Microbiology, Vol. 87, No. 21 ( 2013-11), p. 11684-11692
    Abstract: The measles virus (MV) nucleoprotein associates with the viral RNA genome to form the N-RNA complex, providing a template for viral RNA synthesis. In our previous study, major phosphorylation sites of the nucleoprotein were identified as S479 and S510. However, the functions of these phosphorylation sites have not been clarified. In this study, we rescued recombinant MVs (rMVs) whose phosphorylation sites in the nucleoprotein were substituted (rMV-S479A, rMV-S510A, and rMV-S479A/S510A) by reverse genetics and used them in subsequent analyses. In a one-step growth experiment, rMVs showed rapid growth kinetics compared with wild-type MV, although the peak titer of the wild-type MV was the same as or slightly higher than those of the rMVs. Time course analysis of nucleoprotein accumulation also revealed that viral gene expression of rMV was enhanced during the early phase of infection. These findings suggest that nucleoprotein phosphorylation has an important role in controlling viral growth rate through the regulation of viral gene expression. Conversely, multistep growth curves revealed that nucleoprotein-phosphorylation intensity inversely correlated with viral titer at the plateau phase. Additionally, the phosphorylation intensity of the wild-type nucleoprotein in infected cells was significantly reduced through nucleoprotein-phosphoprotein binding. Excessive nucleoprotein-phosphorylation resulted in lower stability against RNase and faster turnover of viral genomic RNA. These results suggest that nucleoprotein-phosphorylation is also involved in viral genomic RNA stability.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 88, No. 2 ( 2014-01-15), p. 1140-1149
    Abstract: Measles virus nucleoprotein is the most abundant viral protein and tightly encapsidates viral genomic RNA to support viral transcription and replication. Major phosphorylation sites of nucleoprotein include the serine residues at locations 479 and 510. Minor phosphorylation residues have yet to be identified, and their functions are poorly understood. In our present study, we identified nine putative phosphorylation sites by mass spectrometry and demonstrated that threonine residue 279 (T279) is functionally significant. Minigenome expression assays revealed that a mutation at the T279 site caused a loss of activity. Limited proteolysis and electron microscopy suggested that a T279A mutant lacked the ability to encapsidate viral RNA but was not denatured. Furthermore, dephosphorylation of the T279 site by alkaline phosphatase treatment caused deficiencies in nucleocapsid formation. Taken together, these results indicate that phosphorylation at T279 is a prerequisite for successful nucleocapsid formation.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2007
    In:  Journal of Virology Vol. 81, No. 21 ( 2007-11), p. 11569-11576
    In: Journal of Virology, American Society for Microbiology, Vol. 81, No. 21 ( 2007-11), p. 11569-11576
    Abstract: The nonsegmented, negative-sense RNA genome of measles virus (MV) is encapsidated by the virus-encoded nucleocapsid protein (N). In this study, we searched for N-binding cellular proteins by using MV-N as bait and screening the human T-cell cDNA library by yeast two-hybrid assay and isolated the p40 subunit of eukaryotic initiation factor 3 (eIF3-p40) as a binding partner. The interaction between MV-N and eIF3-p40 in mammalian cells was confirmed by coimmunoprecipitation. Since eIF3-p40 is a translation initiation factor, we analyzed the potential inhibitory effect of MV-N on protein synthesis. Glutathione S -transferase (GST)-fused MV-N (GST-N) inhibited translation of reporter mRNAs in rabbit reticulocyte lysate translation system in a dose-dependent manner. Encephalomyocarditis virus internal ribosomal entry site-mediated translation, which requires canonical initiation factors to initiate translation, was also inhibited by GST-N. In contrast, a unique form of translation mediated by the intergenic region of Plautia stali intestine virus, which can assemble 80S ribosomes in the absence of canonical initiation factors, was scarcely affected by GST-N. In vivo expression of MV-N induced by the Cre/ lox P switching system inhibited the synthesis of a transfected reporter protein, as well as overall protein synthesis. These results suggest that MV-N targets eIF3-p40 and may be involved in inhibiting MV-induced host translation.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2016
    In:  Journal of Virology Vol. 90, No. 20 ( 2016-10-15), p. 9285-9292
    In: Journal of Virology, American Society for Microbiology, Vol. 90, No. 20 ( 2016-10-15), p. 9285-9292
    Abstract: In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. IMPORTANCE CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2015
    In:  Journal of Virology Vol. 89, No. 19 ( 2015-10), p. 9709-9718
    In: Journal of Virology, American Society for Microbiology, Vol. 89, No. 19 ( 2015-10), p. 9709-9718
    Abstract: Measles virus (MeV) causes several unique syndromes, including transient immunosuppression. To clarify the cellular responses to MeV infection, we previously analyzed a MeV-infected epithelial cell line and a lymphoid cell line by microarray and showed that the expression of numerous genes was up- or downregulated in the epithelial cells. In particular, there was a characteristic comprehensive downregulation of housekeeping genes during late stage infection. To identify the mechanism underlying this phenomenon, we examined the phosphorylation status of transcription factors and kinase/phosphatase activities in epithelial cells after infection. MeV infection inactivated cellular protein phosphatase 5 (PP5) that consequently inactivated DNA-dependent protein kinase, which reduced Sp1 phosphorylation levels, and c-Myc degradation, both of which downregulated the expression of many housekeeping genes. In addition, intracellular accumulation of viral nucleocapsid inactivated PP5 and subsequent downstream responses. These findings demonstrate a novel strategy of MeV during infection, which causes the collapse of host cellular functions. IMPORTANCE Measles virus (MeV) is one of the most important pathogens in humans. We previously showed that MeV infection induces the comprehensive downregulation of housekeeping genes in epithelial cells. By examining this phenomenon, we clarified the molecular mechanism underlying the constitutive expression of housekeeping genes in cells, which is maintained by cellular protein phosphatase 5 (PP5) and DNA-dependent protein kinase. We also demonstrated that MeV targets PP5 for downregulation in epithelial cells. This is the first report to show how MeV infection triggers a reduction in overall cellular functions of infected host cells. Our findings will help uncover unique pathogenicities caused by MeV.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Journal of Virology Vol. 78, No. 12 ( 2004-06-15), p. 6676-6681
    In: Journal of Virology, American Society for Microbiology, Vol. 78, No. 12 ( 2004-06-15), p. 6676-6681
    Abstract: We previously demonstrated that the rinderpest virus (RPV) hemagglutinin (H) protein plays an important role in determining host range but that other viral proteins are clearly required for full RPV pathogenicity to be manifest in different species. To examine the effects of the RPV nucleocapsid (N) protein and phosphoprotein (P) genes on RPV cross-species pathogenicity, we constructed two new recombinant viruses in which the H and P or the H, N, and P genes of the cattle-derived RPV RBOK vaccine were replaced with those from the rabbit-adapted RPV-Lv strain, which is highly pathogenic in rabbits. The viruses rescued were designated recombinant RPV-lapPH (rRPV-lapPH) and rRPV-lapNPH, respectively. Rabbits inoculated with RPV-Lv become feverish and show leukopenia and a decrease in body weight gain, while clinical signs of infection are never observed in rabbits inoculated with RPV-RBOK or with rRPV-lapH. However, rabbits inoculated with either rRPV-lapPH or rRPV-lapNPH became pyrexic and showed leukopenia. Further, histopathological lesions and high virus titers were clearly observed in the lymphoid tissues from animals infected with rRPV-lapPH or rRPV-lapNPH, although they were not observed in rabbits infected with RPV-RBOK or rRPV-lapH. The clinical, virological, and histopathological signs in rabbits infected with the two new recombinant viruses did not differ significantly; therefore, the RPV P gene was considered to be a key determinant of cross-species pathogenicity.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society for Microbiology ; 2010
    In:  Journal of Virology Vol. 84, No. 19 ( 2010-10), p. 9793-9799
    In: Journal of Virology, American Society for Microbiology, Vol. 84, No. 19 ( 2010-10), p. 9793-9799
    Abstract: The interaction of Nipah virus (NiV) nucleocapsid (N) protein with phosphoprotein (P) during nucleocapsid assembly is the essential process in the viral life cycle, since only the encapsidated RNA genome can be used for replication. To identify the region responsible for N-P interaction, we utilized fluorescent protein tags to visualize NiV N and P proteins in live cells and analyzed their cellular localization. N protein fused to monomeric enhanced cyan fluorescence protein (N-ECFP) exhibited a dotted pattern in transfected cells, while P protein fused to monomeric red fluorescent protein (P-mRFP) showed diffuse distribution. When the two proteins were coexpressed, P-mRFP colocalized with N-ECFP dots. N-ECFP mutants with serial amino acid deletions were generated to search for the region(s) responsible for this N-P colocalization. We found that, in addition to the 467- to 496-amino-acid (aa) region reported previously, aa 135 to 146 were responsible for the N-P colocalization. The residues crucial for N-P interaction were further investigated by introducing alanine substitutions into the untagged N protein. Alanine scanning in the region of aa 135 to 146 has revealed that there are distinct regions essential for the interaction of N-P and the function of N. This is the first study to visualize Nipah viral proteins in live cells and to assess the essential domain of N protein for the interaction with P protein.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society for Microbiology ; 2011
    In:  Journal of Virology Vol. 85, No. 5 ( 2011-03), p. 2247-2253
    In: Journal of Virology, American Society for Microbiology, Vol. 85, No. 5 ( 2011-03), p. 2247-2253
    Abstract: Measles is a highly contagious human disease caused by the measles virus (MeV). In this study, by proteomic analysis, we identified peroxiredoxin 1 (Prdx1) as a host factor that binds to the C-terminal region of the nucleoprotein (N; N TAIL ) of MeV. Glutathione S -transferase (GST) pulldown experiments showed that the Prdx1-binding site overlapped with the MeV phosphoprotein (P)-binding site on N TAIL and that Prdx1 competed for the binding to N TAIL with the P protein, which is a component of RNA-dependent RNA polymerase (RdRp). Furthermore, RNA interference for Prdx1 resulted in a significant reduction in MeV growth in HEK293-SLAM cells. A minigenome assay indicated that Prdx1 suppression affected the viral RNA transcription and/or replication step. Relative quantification of viral RNA by real-time PCR (RT-PCR) showed that Prdx1 suppression not only reduced viral RNA transcription and replication but also enhanced polar attenuation in viral mRNA transcription. Surface plasmon resonance analysis showed that the binding affinity of Prdx1 to MeV-N was 40-fold lower than that of MeV-P to MeV-N, which suggested that Prdx1 might be involved in the early stage of MeV infection, when the expression level of Prdx1 was much higher than that of MeV-P. Since Prdx1 was expressed abundantly and constitutively in various cells, the results in this study indicate that Prdx1 is one of the inherent host factors implicated in MeV RNA synthesis.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Journal of Virology Vol. 87, No. 12 ( 2013-06-15), p. 6582-6588
    In: Journal of Virology, American Society for Microbiology, Vol. 87, No. 12 ( 2013-06-15), p. 6582-6588
    Abstract: Nipah virus (NiV) is a nonsegmented, single-stranded, negative-sense RNA virus belonging to the genus Henipavirus , family Paramyxoviridae . NiV causes acute encephalitis and respiratory disease in humans, is associated with high mortality, and poses a threat in southern Asia. The genomes of henipaviruses are about 18,246 nucleotides (nt) long, which is longer than those of other paramyxoviruses (around 15,384 nt). This difference is caused by the noncoding RNA region, particularly the 3′ untranslated region (UTR), which occupies more than half of the noncoding RNA region. To determine the function(s) of the NiV noncoding RNA region, we investigated the effects of NiV 3′ UTRs on reporter gene expression. The NiV N 3′ UTR (nt 1 to 100) demonstrated strong repressor activity associated with hnRNP D protein binding to that region. Mutation of the hnRNP D binding site or knockdown of hnRNP D resulted in increased expression of the NiV N 3′ UTR reporter. Our findings suggest that NiV N expression is repressed by hnRNP D through the NiV N 3′ UTR and demonstrate the involvement of posttranscriptional regulation in the NiV life cycle. To the best of our knowledge, this provides the first report of the functions of the NiV noncoding RNA region.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...