GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (6)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Journal of Bacteriology Vol. 190, No. 5 ( 2008-03), p. 1554-1560
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 190, No. 5 ( 2008-03), p. 1554-1560
    Abstract: Unlike Escherichia coli , the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m −2 s −1 ). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from P petE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2011
    In:  Journal of Bacteriology Vol. 193, No. 11 ( 2011-06), p. 2675-2683
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 193, No. 11 ( 2011-06), p. 2675-2683
    Abstract: Synechocystis sp. strain PCC 6803 cultured at 30°C losses viability quickly under chill (5°C)-light stress but becomes highly tolerant to the stress after conditioning at 15°C (Y. Yang, C. Yin, W. Li, and X. Xu, J. Bacteriol. 190: 1554–1560, 2008). Hypothetically, certain factors induced during preconditioning are involved in acquisition of chill-light tolerance. In this study, Rbp1 (RNA-binding protein 1) rather than Rbp2 was found to be accumulated during preconditioning, and the accumulation of Rbp1 was correlated with the increase of chill-light tolerance. Inactivation of its encoding gene rbp1 led to a great reduction in the acquired chill-light tolerance, while ectopic expression of rbp1 enabled the cyanobacterium to survive the chill-light stress without preconditioning. Microarray analyses suggested that the Rbp1-dependent chill-light tolerance may not be based on its influence on mRNA abundance of certain genes. Similarly to that in Synechocystis , the Rbp1 homologue(s) can be accumulated in Microcystis cells collected from a subtropic lake in low-temperature seasons. Rbp1 is the first factor shown to be both accumulated early during preconditioning and directly involved in development of chill-light tolerance in Synechocystis . Its accumulation may greatly enhance the overwintering capability in certain groups of cyanobacteria.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2015
    In:  Journal of Bacteriology Vol. 197, No. 14 ( 2015-07-15), p. 2325-2334
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 197, No. 14 ( 2015-07-15), p. 2325-2334
    Abstract: Polyamines are found in all groups of cyanobacteria, but their role in environmental adaptation has been barely investigated. In Synechocystis sp. strain PCC 6803, inactivation of spermidine synthesis genes significantly reduced the survivability under chill (5°C)-light stress, and the survivability could be restored by addition of spermidine. To analyze the effects of spermidine on gene expression at 5°C, lacZ was expressed from the promoter of carboxy(nor)spermidine decarboxylase gene ( CASDC ) in Synechocystis . Synechocystis 6803::P CASDC - lacZ pretreated at 15°C showed a high level of LacZ activity for a long period of time at 5°C; without the pretreatment or with protein synthesis inhibited at 5°C, the enzyme activity gradually decreased. In a spermidine-minus mutant harboring P CASDC - lacZ , lacZ showed an expression pattern as if protein synthesis were inhibited at 5°C, even though the stability of its mRNA increased. Four other genes, including rpoA that encodes the α subunit of RNA polymerase, showed similar expression patterns. The chill-light stress led to a rapid increase of protein carbonylation in Synechocystis . The protein carbonylation then quickly returned to the background level in the wild type but continued to slowly increase in the spermidine-minus mutant. Our results indicate that spermidine promotes gene expression and replacement of damaged proteins in cyanobacteria under the chill-light stress in winter. IMPORTANCE Outbreak of cyanobacterial blooms in freshwater lakes is a worldwide environmental problem. In the annual cycle of bloom-forming cyanobacteria, overwintering is the least understood stage. Survival of Synechocystis sp. strain PCC 6803 under long-term chill (5°C)-light stress has been established as a model for molecular studies on overwintering of cyanobacteria. Here, we show that spermidine, the most common polyamine in cyanobacteria, promotes the survivability of Synechocystis under long-term chill-light stress and that the physiological function is based on its effects on gene expression and recovery from protein damage. This is the first report on the role of polyamines in survival of overwintering cyanobacteria. We also analyzed spermidine synthesis pathways in cyanobacteria on the basis of bioinformatic and experimental data.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2020
    In:  Applied and Environmental Microbiology Vol. 86, No. 5 ( 2020-02-18)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 5 ( 2020-02-18)
    Abstract: The Inland Pacific Northwest is one of the most productive dryland wheat production areas in the United States. We explored the bacterial and fungal communities associated with wheat in a controlled greenhouse experiment using soils from multiple locations to identify core taxa consistently associated with wheat roots and how land use history influences wheat-associated communities. Further, we examined microbial co-occurrence networks from wheat rhizospheres to identify candidate hub taxa. Location of origin and land use history (long-term no-till versus noncropped Conservation Reserve Program [CRP]) of soils were the strongest drivers of bacterial and fungal communities. Wheat rhizospheres were especially enriched in many bacterial families, while only a few fungal taxa were enriched in the rhizosphere. There was a core set of bacteria and fungi that was found in 〉 95% of rhizosphere or bulk soil samples, including members of Bradyrhizobium, Sphingomonadaceae , Massilia , Variovorax , Oxalobacteraceae , and Caulobacteraceae . Core fungal taxa in the rhizosphere included Nectriaceae, Ulocladium , Alternaria , Mortierella , and Microdochium . Overall, there were fewer core fungal taxa, and the rhizosphere effect was not as pronounced as with bacteria. Cross-domain co-occurrence networks were used to identify hub taxa in the wheat rhizosphere, which included bacterial and fungal taxa (e.g., Sphingomonas , Massilia , Knufia , and Microdochium ). Our results suggest that there is a relatively small group of core rhizosphere bacteria that were highly abundant on wheat roots regardless of soil origin and land use history. These core communities may play important roles in nutrient uptake, suppressing fungal pathogens, and other plant health functions. IMPORTANCE Plant-associated microbiomes are critical for plant health and other important agroecosystem processes. We assessed the bacterial and fungal microbiomes of wheat grown in soils from across a dryland wheat cropping systems in eastern Washington to identify the core microbiome on wheat roots that is consistent across soils from different locations and land use histories. Moreover, cross-domain co-occurrence network analysis identified core and hub taxa that may play important roles in microbial community assembly. Candidate core and hub taxa provide a starting point for targeting microbiome components likely to be critical to plant health and for constructing synthetic microbial communities for further experimentation. This work is one of the first examples of identifying a core microbiome on a major field crop grown across hundreds of square kilometers over a wide range of biogeographical zones.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 79, No. 23 ( 2013-12), p. 7428-7438
    Abstract: Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga , Pedobacter , Oxalobacteriaceae ( Duganella and Massilia ), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia -inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2017
    In:  Applied and Environmental Microbiology Vol. 83, No. 22 ( 2017-11-15)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 83, No. 22 ( 2017-11-15)
    Abstract: Glyphosate is the most widely used herbicide worldwide and a critical tool for weed control in no-till cropping systems. However, there are concerns about the nontarget impacts of long-term glyphosate use on soil microbial communities. We investigated the impacts of repeated glyphosate treatments on bacterial communities in the soil and rhizosphere of wheat in soils with and without long-term history of glyphosate use. We cycled wheat in the greenhouse using soils from 4 paired fields under no-till (20+-year history of glyphosate) or no history of use. At each cycle, we terminated plants with glyphosate (2× the field rate) or by removing the crowns, and soil and rhizosphere bacterial communities were characterized. Location, cropping history, year, and proximity to the roots had much stronger effects on bacterial communities than did glyphosate, which only explained 2 to 5% of the variation. Less than 1% of all taxa were impacted by glyphosate, more in soils with a long history of use, and more increased than decreased in relative abundance. Glyphosate had minimal impacts on soil and rhizosphere bacteria of wheat, although dying roots after glyphosate application may provide a “greenbridge” favoring some copiotrophic taxa. IMPORTANCE Glyphosate (Roundup) is the most widely used herbicide in the world and the foundation of Roundup Ready soybeans, corn, and the no-till cropping system. However, there have been recent concerns about nontarget impacts of glyphosate on soil microbes. Using next-generation sequencing methods and glyphosate treatments of wheat plants, we described the bacterial communities in the soil and rhizosphere of wheat grown in Pacific Northwest soils across multiple years, different locations, and soils with different histories of glyphosate use. The effects of glyphosate were subtle and much less than those of drivers such as location and cropping systems. Only a small percentage of the bacterial groups were influenced by glyphosate, and most of those were stimulated, probably because of the dying roots. This study provides important information for the future of this important tool for no-till systems and the environmental benefits of reducing soil erosion and fossil fuel inputs.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...