GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 190, No. 14 ( 2008-07-15), p. 5063-5074
    Abstract: Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4 capsule (G4C), and in this report we show that EHEC O157 also produces a G4C, whose assembly is dependent on the etp , etk , and wzy genes. We further show that at early time points postinfection, these G4Cs appear to mask surface structures including intimin and the TTSS. This masking inhibited the attachment of EPEC and EHEC to tissue-cultured epithelial cells, diminished their capacity to induce the formation of actin pedestals, and attenuated TTSS-mediated protein translocation into host cells. Importantly, we found that Ler, a positive regulator of intimin and TTSS genes, represses the expression of the capsule-related genes, including etp and etk . Thus, the expression of TTSS and G4C is conversely regulated and capsule production is diminished upon TTSS expression. Indeed, at later time points postinfection, the diminishing capsule no longer interferes with the activities of intimin and the TTSS. Notably, by using the rabbit infant model, we found that the EHEC G4C is required for efficient colonization of the rabbit large intestine. Taken together, our results suggest that temporal expression of the capsule, which is coordinated with that of the TTSS, is required for optimal EHEC colonization of the host intestine.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Clinical Diagnostic Laboratory Immunology Vol. 6, No. 5 ( 1999-09), p. 765-767
    In: Clinical Diagnostic Laboratory Immunology, American Society for Microbiology, Vol. 6, No. 5 ( 1999-09), p. 765-767
    Abstract: Neospora caninum is a protozoan parasite that is closely related to Toxoplasma gondii . Dogs are a definitive host. Prior to its discovery in 1988, N. caninum infection in animals was often mistakenly diagnosed as toxoplasmosis. Neosporosis in animals is characterized by encephalitis, abortion, and other conditions that clinically and pathologically resemble toxoplasmosis. The potential of N. caninum to infect humans is unknown. Therefore, evidence of human exposure to this parasite was sought by screening for antibodies in blood donors by indirect fluorescent antibody (IFA) tests and immunoblotting. Of 1,029 samples screened, 69 (6.7%) had titers of 1:100 by IFA testing. Fifty of the 69 (72%) sera that were positive for N. caninum were also negative for a closely related protozoan pathogen of humans, T. gondii . Immunoblot analysis confirmed the specificity of the positive sera for N. caninum antigens, with several sera recognizing multiple Neospora antigens with molecular masses similar to those of antigens recognized by monkey anti- N. caninum serum. An immunodominant antigen of approximately 35 kDa was observed with 12 sera. These data provide evidence of human exposure to N. caninum , although the antibody titers in healthy donors were low. The significance of human exposure to, and possible infection with, this parasite is unknown and warrants further study.
    Type of Medium: Online Resource
    ISSN: 1071-412X , 1098-6588
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1496863-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 92, No. 14 ( 2018-07-15)
    Abstract: The phase III RV144 human immunodeficiency virus (HIV) vaccine trial conducted in Thailand remains the only study to show efficacy in decreasing the HIV acquisition risk. In Thailand, circulating recombinant forms of HIV clade A/E (CRF01_AE) predominate; in such viruses, env originates from clade E (HIV-E). We constructed a simian-human immunodeficiency virus (SHIV) chimera carrying env isolated from an RV144 placebo recipient in the SHIV-1157ipd3N4 backbone. The latter contains long terminal repeats (LTRs) with duplicated NF-κB sites, thus resembling HIV LTRs. We devised a novel strategy to adapt the parental infectious molecular clone (IMC), R5 SHIV-E1, to rhesus macaques: the simultaneous depletion of B and CD8 + cells followed by the intramuscular inoculation of proviral DNA and repeated administrations of cell-free virus. High-level viremia and CD4 + T-cell depletion ensued. Passage 3 virus unexpectedly caused acute, irreversible CD4 + T-cell loss; the partially adapted SHIV had become dual tropic. Virus and IMCs with exclusive R5 tropism were reisolated from earlier passages, combined, and used to complete adaptation through additional macaques. The final isolate, SHIV-E1p5, remained solely R5 tropic. It had a tier 2 neutralization phenotype, was mucosally transmissible, and was pathogenic. Deep sequencing revealed 99% Env amino acid sequence conservation; X4-only and dual-tropic strains had evolved independently from an early branch of parental SHIV-E1. To conclude, our primate model data reveal that SHIV-E1p5 recapitulates important aspects of HIV transmission and pathobiology in humans. IMPORTANCE Understanding the protective principles that lead to a safe, effective vaccine against HIV in nonhuman primate (NHP) models requires test viruses that allow the evaluation of anti-HIV envelope responses. Reduced HIV acquisition risk in RV144 has been linked to nonneutralizing IgG antibodies with a range of effector activities. Definitive experiments to decipher the mechanisms of the partial protection observed in RV144 require passive-immunization studies in NHPs with a relevant test virus. We have generated such a virus by inserting env from an RV144 placebo recipient into a SHIV backbone with HIV-like LTRs. The final SHIV-E1p5 isolate, grown in rhesus monkey peripheral blood mononuclear cells, was mucosally transmissible and pathogenic. Earlier SHIV-E passages showed a coreceptor switch, again mimicking HIV biology in humans. Thus, our series of SHIV-E strains mirrors HIV transmission and disease progression in humans. SHIV-E1p5 represents a biologically relevant tool to assess prevention strategies.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 1 ( 2017-01)
    Abstract: The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV] ). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro . The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Infection and Immunity, American Society for Microbiology, Vol. 77, No. 8 ( 2009-08), p. 3302-3311
    Abstract: The observation that Borrelia burgdorferi -induced arthritis is severe in C3H mice and milder in C57BL/6 (B6) mice has allowed a forward genetics approach for the identification of genetic elements that regulate the arthritis response. Quantitative trait loci (QTL) on five chromosomes (Chr) were identified previously in segregating crosses between C3H and B6 mice and collectively designated B. burgdorferi arthritis-associated ( Bbaa ) QTL. Reciprocal interval-specific congenic lines (ISCL) that encompass Bbaa1 , Bbaa2 - Bbaa3 , Bbaa4 , Bbaa6 , and Bbaa12 on Chr 4, 5, 11, 12, and 1, respectively, have now been generated. Bidirectional transfer of the arthritis severity phenotype in association with Bbaa2 - Bbaa3 and Bbaa4 was observed, and unidirectional transfer with the B6 allele of Bbaa6 was noted. These findings confirm the existence of polymorphic loci within Bbaa2 - Bbaa3 , Bbaa4 , and Bbaa6 that regulate the severity of B. burgdorferi -induced arthritis. ISCL were used to assess the regulation of a previously identified interferon transcriptional profile associated with severe disease in C3H mice. The regulation of this transcriptional signature was found to be independent of penetrant Bbaa QTL, both in joint tissues and in isolated macrophages. These results clearly demonstrate the utility of forward genetics for the discovery of novel genes and pathways involved in the regulation of the severity of Lyme arthritis and predict the involvement of regulatory elements not evident from other experimental approaches.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2009
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: mBio, American Society for Microbiology, Vol. 11, No. 4 ( 2020-08-25)
    Abstract: Toxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo . Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis. IMPORTANCE Cells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this report, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration involves not the enzymatic activity of IRE1 but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo . Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: mBio, American Society for Microbiology, Vol. 12, No. 1 ( 2021-02-23)
    Abstract: Toxoplasma gondii is an obligate intracellular parasite that persists in its vertebrate hosts in the form of dormant tissue cysts, which facilitate transmission through predation. The parasite must strike a balance that allows it to disseminate throughout its host without killing it, which requires the ability to properly counter host cell defenses. For example, oxidative stress encountered by Toxoplasma is suggested to impair parasite replication and dissemination. However, the strategies by which Toxoplasma mitigates oxidative stress are not yet clear. Among eukaryotes, environmental stresses induce the integrated stress response via phosphorylation of a translation initiation factor, eukaryotic initiation factor 2 (eIF2). Here, we show that the Toxoplasma eIF2 kinase TgIF2K-B is activated in response to oxidative stress and affords protection. Knockout of the TgIF2K-B gene, Δ tgif2k-b , disrupted parasite responses to oxidative stresses and enhanced replication, diminishing the ability of the parasite to differentiate into tissue cysts. In addition, parasites lacking TgIF2K-B exhibited resistance to activated macrophages and showed greater virulence in an in vivo model of infection. Our results establish that TgIF2K-B is essential for Toxoplasma responses to oxidative stress, which are important for the parasite’s ability to establish persistent infection in its host. IMPORTANCE Toxoplasma gondii is a single-celled parasite that infects nucleated cells of warm-blooded vertebrates, including one-third of the human population. The parasites are not cleared by the immune response and persist in the host by converting into a latent tissue cyst form. Development of tissue cysts can be triggered by cellular stresses, which activate a family of TgIF2 kinases to phosphorylate the eukaryotic translation initiation factor TgIF2α. Here, we establish that the TgIF2 kinase TgIF2K-B is activated by oxidative stress and is critical for maintaining oxidative balance in the parasite. Depletion of TgIF2K-B alters gene expression, leading to accelerated growth and a diminished ability to convert into tissue cysts. This study establishes that TgIF2K-B is essential for the parasite’s oxidative stress response and its ability to persist in the host as a latent infection.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...