GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (6)
Material
Publisher
  • American Society for Microbiology  (6)
Language
Years
Subjects(RVK)
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 12 ( 2017-06-15)
    Abstract: Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health. IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable of causing gastroenteritis in humans, even though 8 group A viruses (RVAs) have been identified from bats so far. In this study, another 4 RVA strains were identified, with one providing strong evidence for zoonotic transmission from bats to humans. Serological investigation has also indicated that RVA infection in bats is far more prevalent than expected based on the detection of viral RNA.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 76, No. 16 ( 2010-08-15), p. 5520-5525
    Abstract: Environmental waters are an important reservoir for Vibrio cholerae , and effective surveillance of the pathogen can help to warn of and prevent infection with this potentially fatal pathogen. An immunofluorescent-aggregation (IFAG) assay to detect V. cholerae O1 and O139 was established and evaluated with estuarine water samples. The practical application of this assay was compared with the conventional culture method and real-time PCR. The IFAG method had a sensitivity of 10 3 CFU/ml for detection of V. cholerae O1 and O139 strains in a suspension containing 10 different species of enterobacterial strains (total, 10 5 CFU/ml). Ten fluorescent bacterial aggregate colonies were randomly picked and tested positive in serum agglutination tests for the V. cholerae O1 and O139 strains, showing a high specificity. The enrichment broths of 146 samples of estuarine water were tested, and the percentage positive by the IFAG assay was 19.9% (29/146), which was significantly higher than that of the conventional culture method (10.3%, 15/146; P 〈 0.01) but lower than that of real-time PCR (29.5%, 43/146; P 〈 0.01). The coincidence rates of real-time PCR and IFAG detection were decreased with the reduction of the V. cholerae concentration. The IFAG method, with a high specificity and a relatively high sensitivity, may be used for detection and isolation of V. cholerae in environmental water samples.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 5 ( 2022-10-26)
    Abstract: The increasing awareness of emerging tickborne pathogens (TBPs) has inspired much research. In the present study, the coinfections of TBPs both in ticks and their wild hedgehog hosts in Jiangsu province, Eastern China were determined by metagenome next-generation sequencing and nested PCR. As a result, Rickettsia japonica (81.1%), novel Rickettsia sp. SFGR-1 (5.1%), Anaplasma bovis (12%), A. platys (6.3%), novel Ehrlichia spp. Ehr-1 (16%) and Ehr-2 (0.6%), E. ewingii -like strain (0.6%), Coxiella burnetii (10.9%), and a novel Coxiella -like endosymbiont (CLE) strain (61.1%) were detected in Haemaphysalis flava ticks. A. bovis (43.8%), Ehrlichia sp. Ehr-1 (83.3%), and C. burnetii (80%) were detected in Erinaceus amurensis hedgehogs. Coinfection rates with various TBPs were 71.5% and 83.3% in ticks and hedgehogs, respectively, both with double-pathogen/endosymbiont coinfection rates over 50%. We found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica , A. bovis , Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica , and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various TBPs as a reservoir host, including CLE identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information crucial for assessing the potential infection risks to humans, thus benefiting the development of strategies to prevent and control tick-borne diseases. IMPORTANCE In the present study, we found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica , A. bovis , Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica , and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various tickborne pathogens (TBPs) as a reservoir host, including Coxiella -like endosymbiont (CLE) identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information on TBPs harbored and transmitted by ticks and their hosts, for assessing the potential infection risks to humans, thus benefiting the developing strategies for tick-borne diseases prevention and control.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 11, No. 3 ( 2023-06-15)
    Abstract: Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. We characterized the NDV target cell types in the chicken lung at the single-cell transcriptome level and classified cells into five known and two unknown cell types. The five known cell types are the targets of NDV in the lungs with virus RNA detected. Different paths of infection in the putative trajectories of NDV infection were distinguished between in vivo and in vitro , or between virulent Herts/33 strain and nonvirulent LaSota strain. Gene expression patterns and the interferon (IFN) response in different putative trajectories were demonstrated. IFN responses were elevated in vivo , especially in myeloid and endothelial cells. We distinguished the virus-infected and non-infected cells, and the Toll-like receptor signaling pathway was the main pathway after virus infection. Cell-cell communication analysis revealed the potential cell surface receptor-ligand of NDV. Our data provide a rich resource for understanding NDV pathogenesis and open the way to interventions specifically targeting infected cells. IMPORTANCE Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. Our results open the way to interventions specifically targeting infected cells, suggest principles of virus-host interactions applicable to NDV and other similar pathogens, and highlight the potential for simultaneous single-cell measurements of both host and viral transcriptomes for delineating a comprehensive map of infection in vitro and in vivo . Therefore, this study can be a useful resource for the further investigation and understanding of NDV.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: mSystems, American Society for Microbiology, Vol. 6, No. 3 ( 2021-06-29)
    Abstract: Pigs are a major meat source worldwide and a pillar of Chinese animal husbandry; hence, their health and safety are a prioritized concern of the national economy. Although pig viruses have been continuously investigated, the full extent of the pig virome has remained unknown and emerging viruses are still a major threat to the pig industry. Here, we report a comprehensive study to delineate the pig virome of 1,841 healthy weaned pigs from 45 commercial farms collected from 25 major pig-producing regions across China. A viromic sequence data set, named Pigs_VIRES, which matched 96,586 viral genes from at least 249 genera within 66 families and which almost tripled the number of previously published pig viromic genes, was established. The majority of the mammalian viruses were closely related to currently known ones. A comparison with previously published viromes of bovines, avians, and humans has revealed the distinct composition of Pigs_VIRES, which has provided characteristic viromic signatures of serum, pharyngeal, and anal samples that were significantly influenced by farming management and disease control measures. Taken together, Pigs_VIRES has revealed the most complete viromic data set of healthy pigs to date. The compiled data also provide useful guidance to pig viral disease control and prevention and the biosafety management of pig farms. Especially, the established viromic protocol has created a precision surveillance strategy to potentially innovate currently used surveillance methods of animal infectious diseases, particularly by making precision surveillance available to other animal species on a large scale or even during a nationwide surveillance campaign. IMPORTANCE Pigs are deeply involved in human lives; hence, their viruses are associated with public health. Here, we established the most comprehensive virome of healthy piglets to date, which provides a viromic baseline of weaned pigs for disease prevention and control, highlighting that longitudinal viromic monitoring is needed to better understand the dynamics of the virome in pig development and disease occurrence. The present study also shows how high standards of animal farm management with strict biosafety measures can significantly minimize the risk of introduction of pathogenic viruses into pig farms. Particularly, the viromic strategy established, i.e., high-throughput detection and analyses of various known and unknown pathogenic viruses in a single test at large scale, has completely innovated current surveillance measures in provision of timely and precise detection of all potentially existing pathogenic viruses and can be widely applied in other animal species.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 9 ( 2020-04-16)
    Abstract: Polyomaviruses (PyVs) are small DNA viruses carried by diverse vertebrates. The evolutionary relationships of viruses and hosts remain largely unclear due to very limited surveillance in sympatric communities. In order to investigate whether PyVs can transmit among different mammalian species and to identify host-switching events in the field, we conducted a systematic study of a large collection of bats ( n  = 1,083) from 29 sympatric communities across China which contained multiple species with frequent contact. PyVs were detected in 21 bat communities, with 192 PyVs identified in 186 bats from 15 species within 6 families representing at least 28 newly described PyVs. Surveillance results and phylogenetic analyses surprisingly revealed three interfamily PyV host-switching events in these sympatric bat communities: two distinct PyVs were identified in two bat species in restricted geographical locations, while another PyV clustered phylogenetically with PyVs carried by bats from a different host family. Virus-host relationships of all discovered PyVs were also evaluated, and no additional host-switching events were found. PyVs were identified in different horseshoe bat species in sympatric communities without observation of host-switching events, showed high genomic identities, and clustered with each other. This suggested that even for PyVs with high genomic identities in closely related host species, the potential for host switching is low. In summary, our findings revealed that PyV host switching in sympatric bat communities can occur but is limited and that host switching of bat-borne PyVs is relatively rare on the predominantly evolutionary background of codivergence with their hosts. IMPORTANCE Since the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered highly host restricted in mammals. Sympatric bat communities commonly contain several different bat species in an ecological niche facilitating viral transmission, and they therefore represent a model to identify host-switching events of PyVs. In this study, we screened PyVs in a large number of bats in sympatric communities from diverse habitats across China. We provide evidence that cross-species bat-borne PyV transmission exists, though is limited, and that host-switching events appear relatively rare during the evolutionary history of these viruses. PyVs with close genomic identities were also identified in different bat species without host-switching events. Based on these findings, we propose an evolutionary scheme for bat-borne PyVs in which limited host-switching events occur on the background of codivergence and lineage duplication, generating the viral genetic diversity in bats.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...