GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (3)
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 73, No. 3 ( 2005-03), p. 1532-1542
    Abstract: The V antigen (LcrV) of the plague bacterium Yersinia pestis is a potent protective antigen that is under development as a vaccine component for humans. LcrV is multifunctional. On the bacterial surface it mediates delivery of a set of toxins called Yops into host cells, and as a released protein it can cause production of the immunosuppressive cytokine interleukin-10 (IL-10) and can inhibit chemotaxis of polymorphonuclear neutrophils. It is not known how these mechanisms of LcrV operate, what their relative importance is, when they function during plague, and which are critical to protection by antibody. This study investigated several of these issues. C57BL/6 mice, mice unable to express IL-10, or mice with the macrophage lineage eliminated were treated with a protective anti-LcrV antibody or a nonprotective antibody against YopM and infected intravenously by Y. pestis KIM5 or a strain that lacked the genes encoding all six effector Yops. Viable bacterial numbers were determined at various times. The data indicated that Yops were necessary for Yersinia growth after the bacteria had seeded liver and spleen. Anti-LcrV antibody prevented this growth, even in IL-10 −/− mice, demonstrating that one protective mechanism for anti-LcrV antibody is independent of IL-10. Anti-LcrV antibody had no effect on persistence in organs of Y. pestis lacking effector Yops, even though the yersiniae could strongly express LcrV, suggesting that Yops are necessary for building sufficient bacterial numbers to produce enough LcrV for its immunosuppressive effects. In vitro assays showed that anti-LcrV antibody could partially block delivery of Yops and downstream effects of Yops in infected macrophage-like J774A.1 cells. However, cells of the macrophage lineage were found to be dispensable for protection by anti-LcrV antibody in spleen, although they contributed to protection in liver. Taken together, the data support the hypothesis that one protective effect of the antibody is to block delivery of Yops to host cells and prevent early bacterial growth. The findings also identified the macrophage lineage as one host cell type that mediates protection.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2005
    In:  Infection and Immunity Vol. 73, No. 9 ( 2005-09), p. 6127-6137
    In: Infection and Immunity, American Society for Microbiology, Vol. 73, No. 9 ( 2005-09), p. 6127-6137
    Abstract: LcrV of Yersinia pestis is a major protective antigen proposed for inclusion in subunit plague vaccines. One way that anti-LcrV antibody is thought to protect is by inhibiting the delivery of toxins called Yops to host cells. The present study characterizes the relation between this inhibition and the phagocytosis of the bacteria. J774A.1 cells were infected with Y. pestis KIM5 in the presence of a protective polyclonal anti-LcrV antibody or a nonprotective polyclonal anti-YopM antibody, and delivery of YopH and YopE into the cytoplasm was assayed by immunoblotting. The ability to inhibit the delivery of these Yops depended upon having antibody bound to the cell surface; blocking conditions that prevented the binding of antibody to Fc receptors prevented the inhibition of Yop delivery. Anti-LcrV antibody also promoted phagocytosis of the yersiniae, whereas F(ab′) 2 fragments did not. Further, anti-LcrV antibody could not inhibit the delivery of Yops into cells that were unable to phagocytose due to the presence of cytochalasin D. However, Yops were produced only by extracellular yersiniae. We hypothesize that anti-LcrV antibody does not directly inhibit Yop delivery but instead causes phagocytosis, with consequent inhibition of Yop protein production in the intracellular yersiniae. The prophagocytic effect of anti-LcrV antibody extended to mouse polymorphonuclear neutrophils (PMNs) in vitro, and PMNs were shown to be critical for protection: when PMNs in mice were ablated, the mice lost all ability to be protected by anti-LcrV antibody.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2016
    In:  Antimicrobial Agents and Chemotherapy Vol. 60, No. 7 ( 2016-07), p. 4037-4046
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 60, No. 7 ( 2016-07), p. 4037-4046
    Abstract: Staphylococcus aureus is a leading pathogen in skin and skin structure infections, including surgical and traumatic infections that are associated with biofilm formation. Because biofilm formation is accompanied by high phenotypic resistance of the embedded bacteria, they are almost impossible to eradicate by conventional antibiotics. Therefore, alternative therapeutic strategies are of high interest. We generated nanostructured hybrid nonwovens via the electrospinning of a photoresponsive carbon monoxide (CO)-releasing molecule [CORM-1, Mn 2 (CO) 10 ] and the polymer polylactide. This nonwoven showed a CO-induced antimicrobial activity that was sufficient to reduce the biofilm-embedded bacteria by 70% after photostimulation at 405 nm. The released CO increased the concentration of reactive oxygen species (ROS) in the biofilms, suggesting that in addition to inhibiting the electron transport chain, ROS might play a role in the antimicrobial activity of CORMs on S. aureus . The nonwoven showed increased cytotoxicity on eukaryotic cells after longer exposure, most probably due to the released lactic acid, that might be acceptable for local and short-time treatments. Therefore, CO-releasing nonwovens might be a promising local antimicrobial therapy against biofilm-associated skin wound infections.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...