GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Language
Years
FID
Subjects(RVK)
  • 1
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 62, No. 10 ( 2018-10)
    Abstract: IncFII K plasmids are associated with the acquisition and dissemination of multiple-antimicrobial resistance in Klebsiella pneumoniae and often encountered in clinical isolates of this species. Since the phylogeny and evolution of IncFII K plasmids remain unclear, here we performed large-scale in silico typing and comparative analysis of these plasmids in publicly available bacterial/plasmid genomes. IncFII K plasmids are prevalent in K. pneumoniae , being found in 69% of sequenced genomes, covering 66% of sequenced STs (sequence types), but sparse in other Enterobacteriaceae . IncFII K replicons have three lineages. One IncFII K allele could be found in distinct K. pneumoniae STs, highlighting the lateral genetic flow of IncFII K plasmids. A set of 77 IncFII K plasmids with full sequences were further analyzed. A pool of 327 antibiotic resistance genes or remnants were annotated in 75.3% of these plasmids. Plasmid genome comparison reiterated that they often contain other replicons belonging to IncFIA, IncFIB, IncFII Yp , IncFII pCRY , IncR, IncL, and IncN groups and that they share a conserved backbone featuring an F-like conjugation module that has divergent components responsible for regulation and mating pair stabilization. Further epidemiological studies of IncFII K plasmids are required due to the sample bias of K. pneumoniae genomes in public databases. This study provides insights into the evolution and structures of IncFII K plasmids.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 5 ( 2022-10-26)
    Abstract: Emerging studies reveal unique bacterial communities in the human bladder, with alteration of composition associated to disease states. Systemic lupus erythematosus (SLE) is a complex autoimmune disease that is characterized by frequent impairment of the kidney. Here, we explored the bladder microbiome, metabolome, and cytokine profiles in SLE patients, as well as correlations between microbiome and metabolome, cytokines, and disease profiles. We recruited a group of 50 SLE patients and 50 individually matched asymptomatic controls. We used transurethral catheterization to collect urine samples, 16S rRNA gene sequencing to profile bladder microbiomes, and liquid chromatography-tandem mass spectrometry to perform untargeted metabolomic profiling. Compared to controls, SLE patients possessed unique bladder microbial communities and increased alpha diversity. These differences were accompanied by differences in urinary metabolomes, cytokines, and patients’ disease profiles. The SLE-enriched genera, including Bacteroides , were positively correlated with several SLE-enriched metabolites, including olopatadine. The SLE-depleted genera, such as Pseudomonas , were negatively correlated to SLE-depleted cytokines, including interleukin-8. Alteration of the bladder microbiome was associated with disease profile. For example, the genera Megamonas and Phocaeicola were negatively correlated with serum complement component 3, and Streptococcus was positively correlated with IgG. Our present study reveals associations between the bladder microbiome and the urinary metabolome, cytokines, and disease phenotypes. Our results could help identify biomarkers for SLE. IMPORTANCE Contrary to dogma, the human urinary bladder possesses its own unique bacterial community with alteration of composition associated with disease states. Systemic lupus erythematosus (SLE) is a complex autoimmune disease often characterized by kidney impairment. Here, we explored the bladder microbiome, metabolome, and cytokine profiles in SLE patients, as well as correlations between the microbiome and metabolome, cytokines, and disease profiles. Compared to controls, SLE patients possessed a unique bladder microbial community and elevated alpha diversity. These differences were accompanied by differences in bladder metabolomes, cytokines, and patients’ disease profiles. SLE-enriched genera were positively correlated with several SLE-enriched metabolites. SLE-depleted genera were negatively correlated to SLE-depleted cytokines. Alteration of the bladder microbiome was associated with disease profile. Thus, our study reveals associations between the bladder microbiome and the bladder metabolome, cytokines, and disease phenotypes. These results could help identify biomarkers for SLE.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...