GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 44, No. 11 ( 2006-11), p. 4025-4031
    Abstract: The gastrointestinal microbiota of preterm infants in a neonatal intensive care unit differs from that of term infants. In particular, the colonization of preterm infants by bifidobacteria is delayed. A double-blind, placebo-controlled, randomized clinical study was performed on 69 preterm infants to investigate the role of Bifidobacterium lactis Bb12 supplementation in modifying the gut microbiota. Both culture-dependent and culture-independent approaches were used to study the gut microbiota. Bifidobacterial numbers, determined by fluorescence in situ hybridization, were significantly higher in the probiotic than in the placebo group (log 10 values per g of fecal wet weight: probiotic, 8.18 + 0.54 [standard error of the mean]; placebo, 4.82 + 0.51; P 〈 0.001). A similar trend for bifidobacterial numbers was also obtained with the culture-dependent method. The infants supplemented with Bb12 also had lower viable counts of Enterobacteriaceae (log 10 values of CFU per g of fecal wet weight: probiotic, 7.80 + 0.34; placebo, 9.03 + 0.35; P = 0.015) and Clostridium spp. (probiotic, 4.89 + 0.30; placebo, 5.99 + 0.32; P = 0.014) than the infants in the placebo group. Supplementation of B. lactis Bb12 did not reduce the colonization by antibiotic-resistant organisms in the study population. However, the probiotic supplementation increased the cell counts of bifidobacteria and reduced the cell counts of enterobacteria and clostridia.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mSphere, American Society for Microbiology, Vol. 2, No. 2 ( 2017-04-26)
    Abstract: Toxoplasma gondii is a protozoan parasite of great importance to human and animal health. In the host, this obligate intracellular parasite persists as a tissue cyst that is imperceptible to the immune response and unaffected by current therapies. The tissue cysts facilitate transmission through predation and give rise to chronic cycles of toxoplasmosis in immunocompromised patients. Transcriptional changes accompany conversion of the rapidly replicating tachyzoites into the encysted bradyzoites, and yet the mechanisms underlying these alterations in gene expression are not well defined. Here we show that AP2IX-4 is a nuclear protein exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had no discernible effect on tachyzoite replication but resulted in a reduced frequency of tissue cyst formation following alkaline stress induction—a defect that is reversible by complementation. AP2IX-4 has a complex role in regulating bradyzoite gene expression, as the levels of many bradyzoite mRNAs dramatically increased beyond those seen under conditions of normal stress induction in AP2IX-4 knockout parasites exposed to alkaline media. The loss of AP2IX-4 also resulted in a modest virulence defect and reduced cyst burden in chronically infected mice, which was reversed by complementation. These findings illustrate that the transcriptional mechanisms responsible for tissue cyst development operate across the intermediate life cycle from the dividing tachyzoite to the dormant bradyzoite. IMPORTANCE Toxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and in a mouse model of infection. Parasites missing AP2IX-4 lose the ability to regulate bradyzoite genes during tissue cyst development. Expressed in developing bradyzoites still undergoing division, AP2IX-4 may serve as a useful marker in the study of transitional forms of the parasite.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Infection and Immunity Vol. 67, No. 10 ( 1999-10), p. 5292-5297
    In: Infection and Immunity, American Society for Microbiology, Vol. 67, No. 10 ( 1999-10), p. 5292-5297
    Abstract: We tested the virulence in mice of Toxoplasma gondii RH strain tachyzoites containing various copies of the chloramphenicol acetyl transferase-herpes simplex virus thymidine kinase fusion sequence (CAT-HSTK). Tachyzoite isolates containing ≥five copies of the fusion sequence were not lethal to female CD-1 outbred or BALB/c inbred mice, at doses up to 10 6 parasites, while the parental RH strain caused 100% mortality within 2 weeks at doses as low as 10 parasites. Mice infected with CTK11, an isolate containing five copies of the fusion sequence, showed no overt symptoms of disease and were protected from lethal challenge with the parental RH strain. The CTK11 isolate showed no difference in growth rate, the rate of host cell invasion, or extracellular viability in cell culture compared with parental RH parasites, demonstrating that the CAT-HSTK fusion protein does not affect the normal viability of this isolate. B11, B11C, and D1 isolates contained one or two copies of the CAT-HSTK coding sequence, were not sensitive to thymidine in cell culture, and caused 100% mortality in CD-1 outbred mice in 〈 12 days. A fourth isolate, D1C, contained seven copies of the CAT-HSTK fusion sequence and was sensitive to exogenous thymidine (50% inhibitory concentration = 5.5 μM). Mice infected with D1C showed no symptoms of disease and survived beyond 90 days, thus correlating increased CAT-HSTK gene copies with thymidine sensitivity in cell culture and attenuated virulence in mice. BALB/c mice containing a targeted disruption of the gamma interferon gene (gko) were also susceptible to infection with CTK11 parasites but could be rescued by administration of subcutaneous thymidine once each day for 5 or 10 days following infection. These results suggest that the attenuation of CAT-HSTK + isolates in mice is directly due to active thymidine kinase that likely alters the pyrimidine biosynthetic pathway in these parasites.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2017
    In:  mSphere Vol. 2, No. 1 ( 2017-02-22)
    In: mSphere, American Society for Microbiology, Vol. 2, No. 1 ( 2017-02-22)
    Abstract: The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCE Toxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: mBio, American Society for Microbiology, Vol. 11, No. 5 ( 2020-10-27)
    Abstract: The intracellular protozoan parasite Toxoplasma gondii is capable of infecting most nucleated cells, where it survives in a specially modified compartment called the parasitophorous vacuole (PV). Interferon gamma (IFN-γ) is the major cytokine involved in activating cell-autonomous immune responses to inhibit parasite growth within this intracellular niche. In HeLa cells, IFN-γ treatment leads to ubiquitination of susceptible parasite strains, recruitment of the adaptors p62 and NDP52, and engulfment in microtubule-associated protein 1 light chain 3 (LC3)-positive membranes that restrict parasite growth. IFN-γ-mediated growth restriction depends on core members of the autophagy (ATG) pathway but not the initiation or degradative steps in the process. To explore the connection between these different pathways, we used permissive biotin ligation to identify proteins that interact with ATG5 in an IFN-γ-dependent fashion. Network analysis of the ATG5 interactome identified interferon-stimulated gene 15 (ISG15), which is highly upregulated by IFN treatment, as a hub connecting the ATG complex with other IFN-γ-induced genes, suggesting that it forms a functional link between the pathways. Deletion of ISG15 resulted in impaired recruitment of p62, NDP52, and LC3 to the PV and loss of IFN-γ-restricted parasite growth. The function of ISG15 required conjugation, and a number of ISGylated targets overlapped with the IFN-γ-dependent ATG5 interactome, including the adapter p62. Collectively, our findings establish a role for ISG15 in connecting the ATG pathway with IFN-γ-dependent restriction of T. gondii in human cells. IMPORTANCE Interferon(s) provide the primary defense against intracellular pathogens, a property ascribed to their ability to upregulate interferon-stimulated genes. Due to the sequestered niche occupied by Toxoplasma gondii , the host has elaborated intricate ways to target the parasite within its vacuole. One such mechanism is the recognition by a noncanonical autophagy pathway that envelops the parasite-containing vacuole and stunts growth in human cells. Remarkably, autophagy-dependent growth restriction requires interferon-γ, yet none of the classical components of autophagy are induced by interferon. Our studies draw a connection between these pathways by demonstrating that the antiviral protein ISG15, which is normally upregulated by interferons, links the autophagy-mediated control to ubiquitination of the vacuole. These findings suggest a similar link between interferon-γ signaling and autophagy that may underlie defense against other intracellular pathogens.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Infection and Immunity, American Society for Microbiology, Vol. 70, No. 4 ( 2002-04), p. 1750-1760
    Abstract: Dendritic cells ignite adaptive immunity by priming naïve T lymphocytes. Human monocyte-derived dendritic cells (MDDCs) infected with Toxoplasma gondii induce T-lymphocyte gamma interferon production and may thus activate T. gondii -specific immunity. However, we now demonstrate that T. gondii -infected MDDCs are poor at activating T lymphocytes and are unable to induce specific cytotoxic T lymphocytes. On the other hand, MDDCs acquiring nonviable T. gondii antigens directly, or indirectly through captured apoptotic or necrotic cell bodies, induce potent T-lymphocyte activation. T lymphocytes exposed to infected MDDCs are significantly impaired in upregulation of CD69 and CD28, are refractory to activation, and die through contact-dependent apoptosis mediated by an as-yet-unidentified mechanism not requiring Fas, tumor necrosis factor-related apoptosis-inducing ligand, leukocyte function antigen 1, intercellular adhesion molecule 1, tumor necrosis factor alpha, interleukin 10, alpha interferon, gamma interferon, prostaglandins, or reactive nitrogen intermediates. Bystander T lymphocytes that were neither infected nor apoptotic were refractory to activation, suggesting global dysfunction. Immunosuppression and T-lymphocyte unresponsiveness and apoptosis are typical of acute T. gondii infection. Our data suggest that infected dendritic cells contribute to these processes. On the other hand, host cells infected with T. gondii are resistant to multiple inducers of apoptosis. Thus, regulation of host cell and bystander cell apoptosis by viable T. gondii may be significant components of a strategy to evade immunity and enhance intracellular parasite survival.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...