GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Language
Years
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 88, No. 6 ( 2014-03-15), p. 3182-3191
    Abstract: The integration of retroviruses into the host genome following nonrandom genome-wide patterns may lead to the deregulation of gene expression and oncogene activation near the integration sites. Slow-transforming retroviruses have been widely used to perform genetic screens for the identification of genes involved in cancer. To investigate the involvement of avian leukosis virus subgroup J (ALV-J) integration in myeloid leukosis (ML) in chickens, we utilized an ALV-J insertional identification platform based on hybrid capture target enrichment and next-generation sequencing (NGS). Using high-definition mapping of the viral integration sites in the chicken genome, 241 unique insertion sites were obtained from six different ALV-J-induced ML samples. On the basis of previous statistical definitions, MYC , TERT , and ZIC1 genes were identified as common insertion sites (CIS) of provirus integration in tumor cells; these three genes have previously been shown to be involved in the malignant transformation of different human cell types. Compared to control samples, the expression levels of all three CIS genes were significantly upregulated in chicken ML samples. Furthermore, they were frequently, but not in all field ML cases, deregulated at the mRNA level as a result of ALV-J infection. Our findings contribute to the understanding of the relationship between multipathotypes associated with ALV-J infection and the molecular background of tumorigenesis. IMPORTANCE ALV-Js have been successfully eradicated from chicken breeding flocks in the poultry industries of developed countries, and the control and eradication of ALV-J in China are now progressing steadily. To further study the pathogenesis of ALV-J infections, it will be necessary to elucidate the in vivo viral integration and tumorigenesis mechanism. In this study, 241 unique insertion sites were obtained from six different ALV-J-induced ML samples. In addition, MYC , TERT , and ZIC1 genes were identified as the CIS of ALV-J in tumor cells, which might be a putative “driver” for the activation of the oncogene. In addition, the CIS genes showed deregulated expression compared to nontumor samples. These results have potentially important implications for the mechanism of viral carcinogenesis.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mSystems, American Society for Microbiology, Vol. 4, No. 6 ( 2019-12-17)
    Abstract: Due to the limitations of effective treatments, avian influenza A H5N1 virus is the most lethal influenza virus strain that causes severe acute lung injury (ALI). To develop effective drugs ameliorating H5N1-induced ALI, we explore an RNA interference (RNAi) screening method to monitor changes in cell death induced by H5N1 infection. We performed RNAi screening on 19,424 genes in A549 lung epithelial cells and examined cell death induced by H5N1 infection. These screens identified 1,137 host genes for which knockdown altered cell viability by over 20%. DrugBank searches of these 1,137 host genes identified 146 validated druggable target genes with 372 drug candidates. We obtained 104 commercially available drugs with 65 validated target genes and examined their improvement of cell viability following H5N1 infection. We identified 28 drugs that could significantly recover cell viability following H5N1 infection and tested 10 in an H5N1-induced-ALI mouse model. The neurological drug ifenprodil and the anticancer drug flavopiridol markedly decreased leukocyte infiltration and lung injury scores in infected mouse lungs, significantly ameliorated edema in infected mouse lung tissues, and significantly improved the survival of H5N1-infected mice. Ifenprodil is an antagonist of the N-methyl- d -aspartate (NMDA) receptor, which is linked to inflammation and lung injury. Flavopiridol is an inhibitor of cyclin-dependent kinase 4 (CDK4), which is linked to leukocyte migration and lung injury. These results suggest that ifenprodil and flavopiridol represent novel remedies against potential H5N1 epidemics in addition to their proven indications. Furthermore, our strategy for identifying repurposable drugs could be a general approach for other diseases. IMPORTANCE Drug repurposing is a quick and economical strategy for developing new therapies with approved drugs. H5N1 is a highly pathogenic avian influenza virus subtype that can cause severe acute lung injury (ALI) and a high mortality rate due to limited treatments. The use of RNA interference (RNAi) is a reliable approach to identify essential genes in diseases. In most genomewide RNAi screenings, virus replication is the readout of interference. Since H5N1 virus infection could induce significant cell death and the percentage of cell death is associated with virus lethality, we designed a genomewide RNAi screening method to identify repurposable drugs against H5N1 virus with cell death as the readout. We discovered that the neurological drug ifenprodil and the anticancer drug flavopiridol could effectively ameliorate murine ALI after influenza A H5N1 virus infection, suggesting that they might be novel remedies for H5N1 virus-induced ALI in addition to the traditional indications.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...