GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (4)
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 73, No. 10 ( 1999-10), p. 7981-7987
    Abstract: Human T-cell leukemia virus type 1 (HTLV-1) Tax is thought to play a pivotal role in immortalization of T cells. We have recently shown that the expression of Tax protected the mouse T-cell line CTLL-2 against apoptosis induced by interleukin-2 (IL-2) deprivation and converted its growth from being IL-2 dependent to being IL-2 independent. In this study, we demonstrate that constitutive expression of bcl-xl but not bcl-2 , bcl-xs , bak , bad , or bax was associated with apoptosis resistance after IL-2 deprivation in CTLL-2 cells that expressed Tax. Transient-transfection assays showed that bcl-x promoter was transactivated by wild-type Tax. Similar effects were observed in mutant Tax retaining transactivating ability through NF-κB. Deletion or substitution of a putative NF-κB binding site identified in the bcl-x promoter significantly decreased Tax-induced transactivation. This NF-κB-like element was able to form a complex with NF-κB family proteins in vitro. Furthermore, Tax-induced transactivation of the bcl-x promoter was also diminished by the mutant IκBα, which specifically inhibits NF-κB activity. Our findings suggest that constitutive expression of Bcl-x L induced by Tax through the NF-κB pathway contributes to the inhibition of apoptosis in CTLL-2 cells after IL-2 deprivation.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 2 ( 2022-04-27)
    Abstract: Standardization and quality assurance of microbiome community analysis by high-throughput DNA sequencing require widely accessible and well-characterized reference materials. Here, we report on newly developed DNA and whole-cell mock communities to serve as control reagents for human gut microbiota measurements by shotgun metagenomics and 16S rRNA gene amplicon sequencing. The mock communities were formulated as near-even blends of up to 20 bacterial species prevalent in the human gut, span a wide range of genomic guanine-cytosine (GC) contents, and include multiple strains with Gram-positive type cell walls. Through a collaborative study, we carefully characterized the mock communities by shotgun metagenomics, using previously developed standardized protocols for DNA extraction and sequencing library construction. Further, we validated fitness of the mock communities for revealing technically meaningful differences among protocols for DNA extraction and metagenome/16S rRNA gene amplicon library construction. Finally, we used the mock communities to reveal varying performance of metagenome-based taxonomic profilers and the impact of trimming and filtering of sequencing reads on observed species profiles. The latter showed that aggressive preprocessing of reads may result in substantial GC-dependent bias and should thus be carefully evaluated to minimize unintended effects on species abundances. Taken together, the mock communities are expected to support a myriad of applications that rely on well-characterized control reagents, ranging from evaluation and optimization of methods to assessment of reproducibility in interlaboratory studies and routine quality control. IMPORTANCE Application of high-throughput DNA sequencing has greatly accelerated human microbiome research and its translation into new therapeutic and diagnostic capabilities. Microbiome community analyses results can, however, vary considerably across studies or laboratories, and establishment of measurement standards to improve accuracy and reproducibility has become a priority. The here-developed mock communities, which are available from the NITE Biological Resource Center (NBRC) at the National Institute of Technology and Evaluation (NITE, Japan), provide well-characterized control reagents that allow users to judge the accuracy of their measurement results. Widespread and consistent adoption of the mock communities will improve reproducibility and comparability of microbiome community analyses, thereby supporting and accelerating human microbiome research and development.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 73, No. 2 ( 1999-02), p. 1271-1277
    Abstract: Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia. Tax, the viral protein, is thought to be crucial in the development of the disease, since it transforms healthy T cells in vitro and induces tumors in transgenic animals. We examined the effect of Tax activity on the growth of the interleukin-2 (IL-2)-dependent T-cell line CTLL-2. Stable expression of Tax in CTLL-2 transformed cell growth from being IL-2 dependent to IL-2 independent. Tax stimulated transcription through NF-κB and the cyclic AMP-responsive element-like sequence in the HTLV-1 promoter. The finding of Tax mutants segregating these two pathways suggested that the NF-κB pathway was essential for IL-2-independent growth of CTLL-2 cells while the CRE pathway was unnecessary. However, both pathways were necessary for another transformation-related activity (colony formation in soft agar) of CTLL-2/Tax. Our results show that Tax has at least two distinct activities on T cells, and suggest that Tax plays a crucial role in IL-2-independent T-cell transformation induced by HTLV-1, in addition to its well-known IL-2-dependent cell transformation.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 3 ( 2022-06-29)
    Abstract: In the yeast Saccharomyces cerevisiae , N -acetyl glutamate kinase (NAGK), which catalyzes the phosphorylation of N -acetyl glutamate to form N -acetyl glutamyl-5-phosphate, is one of the rate-limiting enzymes in the ornithine and arginine biosynthetic pathways. NAGK activity is strictly regulated via feedback inhibition by the end product, arginine. We previously reported that the Thr340Ile variant of NAGK was insensitive to arginine feedback inhibition and that the interaction between Lys336 and Thr340 in NAGK may be important for arginine recognition. In the present study, we demonstrated that amino acid changes of Thr340 to Ala, Leu, Arg, Glu, Ile, and Asn removed arginine feedback inhibition, although the Thr340Ser variant was subject to the feedback inhibition. Therefore, these results indicate that the arginine-binding cavity formed via the interaction between the carbonyl group in the main chain of Lys336 and the hydroxyl group in the side chain of the residue at position 340 is critical for arginine recognition of NAGK. In addition, we newly identified two mutations in the ARG5,6 gene encoding the Cys119Tyr or Val267Ala variant of NAGK of sake yeast mutants with intracellular ornithine accumulation. Although it is unlikely that Cys119 and Val267 are directly involved in arginine recognition, we found here that two variants of NAGK were insensitive to arginine feedback inhibition and contributed to high-level production of ornithine. Structural analysis of NAGK suggests that these two amino acid substitutions influence the sensitivity to Arg feedback inhibition through alterations in local conformation around each residue. IMPORTANCE Ornithine has a number of physiological benefits in humans. Thus, an Orn-rich alcoholic beverage is expected to relieve feelings of fatigue after drinking. In the yeast Saccharomyces cerevisiae , N -acetyl glutamate kinase (NAGK) encoded by the ARG5,6 gene catalyzes the second step in ornithine and arginine biosynthesis, and its activity is subjected to feedback inhibition by arginine. Here, we revealed a role of key residues in the formation of the arginine-binding cavity which is critical for arginine recognition of NAGK. In addition, we analyzed novel arginine feedback inhibition-insensitive variants of NAGK in sake yeast mutants with ornithine overproduction and proposed that the amino acid substitutions in the NAGK variants destabilize the arginine-binding cavity, leading to the lower sensitivity to arginine feedback inhibition of NAGK activity. These findings provide new insight into the allosteric regulation of NAGK activity and will help to construct superior industrial yeast strains for high-level production of ornithine.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...