GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2016
    In:  Clinical and Vaccine Immunology Vol. 23, No. 3 ( 2016-03), p. 186-188
    In: Clinical and Vaccine Immunology, American Society for Microbiology, Vol. 23, No. 3 ( 2016-03), p. 186-188
    Abstract: In accompanying papers (P. L. Acosta, M. T. Caballero, and F. P. Polack, Clin Vaccine Immunol 23:189–195, 2016, http://dx.doi.org/10.1128/CVI.00609-15 ; M. Vissers, I. M. L. Ahout, M. I. de Jonge, and G. Ferwerda, Clin Vaccine Immunol 23:243–245, 2016, http://dx.doi.org/10.1128/CVI.00590-15 ) in this issue of Clinical and Vaccine Immunology , the history of and immune mechanisms underlying vaccine-enhanced respiratory syncytial virus (RSV) disease and of investigations of mucosal antibodies and their association with viral load in RSV-infected children, respectively, are described. This commentary discusses RSV vaccine candidates, target populations, and the challenges associated with achieving a safe and effective vaccine.
    Type of Medium: Online Resource
    ISSN: 1556-6811 , 1556-679X
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1496863-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mBio, American Society for Microbiology, Vol. 12, No. 6 ( 2021-12-21)
    Abstract: Current seasonal influenza virus vaccines do not induce robust immune responses to neuraminidase. Several factors, including immunodominance of hemagglutinin over neuraminidase, instability of neuraminidase in vaccine formulations, and variable, nonstandardized amounts of neuraminidase in the vaccines, may contribute to this effect. However, vaccines that induce strong antineuraminidase immune responses would be beneficial, as they are highly protective. Furthermore, antigenic drift is slower for neuraminidase than for hemagglutinin, potentially providing broader coverage. Here, we designed stabilized recombinant versions of neuraminidase by replacing the N-terminal cytoplasmic domain, transmembrane, and extracellular stalk with tetramerization domains from the measles or Sendai virus phosphoprotein or from an Arabidopsis thaliana transcription factor. The measles virus tetramerization domain-based construct, termed N1-MPP, was chosen for further evaluation, as it retained antigenicity, neuraminidase activity, and structural integrity and provided robust protection in vivo against lethal virus challenge in the mouse model. We tested N1-MPP as a standalone vaccine, admixed with seasonal influenza virus vaccines, or given with seasonal influenza virus vaccines but in the other leg of the mouse. Admixture with different formulations of seasonal vaccines led to a weak neuraminidase response, suggesting a dominant effect of hemagglutinin over neuraminidase when administered in the same formulation. However, administration of neuraminidase alone or with seasonal vaccine administered in the alternate leg of the mouse induced robust antibody responses. Thus, this recombinant neuraminidase construct is a promising vaccine antigen that may enhance and broaden protection against seasonal influenza viruses. IMPORTANCE Influenza virus infections remain a high risk to human health, causing up to 650,000 deaths worldwide every year, with an enormous burden on the health care system. Since currently available seasonal vaccines are only partially effective and often mismatched to the circulating strains, a broader protective influenza virus vaccine is needed. Here, we generated a recombinant influenza virus vaccine candidate based on the more conserved neuraminidase surface glycoprotein in order to induce a robust and broader protective immune response against a variety of circulating influenza virus strains.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...