GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (6)
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 92, No. 16 ( 2018-08-15)
    Abstract: Alphaviruses are widely distributed in both hemispheres and circulate between mosquitoes and amplifying vertebrate hosts. Geographically separated alphaviruses have adapted to replication in particular organisms. The accumulating data suggest that this adaptation is determined not only by changes in their glycoproteins but also by the amino acid sequence of the hypervariable domain (HVD) of the alphavirus nsP3 protein. We performed a detailed investigation of chikungunya virus (CHIKV) nsP3 HVD interactions with host factors and their roles in viral replication in vertebrate and mosquito cells. The results demonstrate that CHIKV HVD is intrinsically disordered and binds several distinctive cellular proteins. These host factors include two members of the G3BP family and their mosquito homolog Rin, two members of the NAP1 family, and several SH3 domain-containing proteins. Interaction with G3BP proteins or Rin is an absolute requirement for CHIKV replication, although it is insufficient to solely drive it in either vertebrate or mosquito cells. To achieve a detectable level of virus replication, HVD needs to bind members of at least one more protein family in addition to G3BPs. Interaction with NAP1L1 and NAP1L4 plays a more proviral role in vertebrate cells, while binding of SH3 domain-containing proteins to a proline-rich fragment of HVD is more critical for virus replication in the cells of mosquito origin. Modifications of binding sites in CHIKV HVD allow manipulation of the cell specificity of CHIKV replication. Similar changes may be introduced into HVDs of other alphaviruses to alter their replication in particular cells or tissues. IMPORTANCE Alphaviruses utilize a broad spectrum of cellular factors for efficient formation and function of replication complexes (RCs). Our data demonstrate for the first time that the hypervariable domain (HVD) of chikungunya virus nonstructural protein 3 (nsP3) is intrinsically disordered. It binds at least 3 families of cellular proteins, which play an indispensable role in viral RNA replication. The proteins of each family demonstrate functional redundancy. We provide a detailed map of the binding sites on CHIKV nsP3 HVD and show that mutations in these sites or the replacement of CHIKV HVD by heterologous HVD change cell specificity of viral replication. Such manipulations with alphavirus HVDs open an opportunity for development of new irreversibly attenuated vaccine candidates. To date, the disordered protein fragments have been identified in the nonstructural proteins of many other viruses. They may also interact with a variety of cellular factors that determine critical aspects of virus-host interactions.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 14 ( 2017-07-15)
    Abstract: Eastern equine encephalitis virus (EEEV) is a representative member of the New World alphaviruses. It is pathogenic for a variety of vertebrate hosts, in which EEEV induces a highly debilitating disease, and the outcomes are frequently lethal. Despite a significant public health threat, the molecular mechanism of EEEV replication and interaction with hosts is poorly understood. Our previously published data and those of other teams have demonstrated that hypervariable domains (HVDs) of the alphavirus nsP3 protein interact with virus-specific host factors and play critical roles in assembly of viral replication complexes (vRCs). The most abundantly represented HVD-binding proteins are the FXR and G3BP family members. FXR proteins drive the assembly of vRCs of Venezuelan equine encephalitis virus (VEEV), and G3BPs were shown to function in vRC assembly in the replication of chikungunya and Sindbis viruses. Our new study demonstrates that EEEV exhibits a unique level of redundancy in the use of host factors in RNA replication. EEEV efficiently utilizes both the VEEV-specific FXR protein family and the Old World alphavirus-specific G3BP protein family. A lack of interaction with either FXRs or G3BPs does not affect vRC formation; however, removal of EEEV's ability to interact with both protein families has a deleterious effect on virus growth. Other identified EEEV nsP3 HVD-interacting host proteins are also capable of supporting EEEV replication, albeit with a dramatically lower efficiency. The ability to use a wide range of host factors with redundant functions in vRC assembly and function provides a plausible explanation for the efficient replication of EEEV and may contribute to its highly pathogenic phenotype. IMPORTANCE Eastern equine encephalitis virus (EEEV) is one of the most pathogenic New World alphaviruses. Despite the continuous public health threat, to date, the molecular mechanisms of its very efficient replication and high virulence are not sufficiently understood. The results of this new study demonstrate that North American EEEV exhibits a high level of redundancy in using host factors in replication complex assembly and virus replication. The hypervariable domain of the EEEV nsP3 protein interacts with all of the members of the FXR and G3BP protein families, and only a lack of interaction with both protein families strongly affects virus replication rates. Other identified HVD-binding factors are also involved in EEEV replication, but their roles are not as critical as those of FXRs and G3BPs. The new data present a plausible explanation for the exceptionally high replication rates of EEEV and suggest a new means of its attenuation and new targets for screening of antiviral drugs.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Infection and Immunity, American Society for Microbiology, Vol. 80, No. 12 ( 2012-12), p. 4115-4122
    Abstract: Extraintestinal Escherichia coli (ExPEC), a heterogeneous group of pathogens, encompasses avian, neonatal meningitis, and uropathogenic E. coli strains. While several virulence factors are associated with ExPEC, there is no core set of virulence factors that can be used to definitively differentiate these pathotypes. Here we describe a multiplex of four virulence factor-encoding genes, yfcV , vat , fyuA , and chuA , highly associated with uropathogenic E. coli strains that can distinguish three groups of E. coli : diarrheagenic and animal-associated E. coli strains, human commensal and avian pathogenic E. coli strains, and uropathogenic and neonatal meningitis E. coli strains. Furthermore, human intestinal isolates that encode all four predictor genes express them during exponential growth in human urine and colonize the bladder in the mouse model of ascending urinary tract infection in higher numbers than human commensal strains that do not encode the four predictor genes ( P = 0.02), suggesting that the presence of the predictors correlates with uropathogenic potential.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Infection and Immunity, American Society for Microbiology, Vol. 79, No. 12 ( 2011-12), p. 4753-4763
    Abstract: Escherichia coli , a cause of ∼90% of urinary tract infections (UTI), utilizes fimbrial adhesins to colonize the uroepithelium. Pyelonephritis isolate E. coli CFT073 carries 12 fimbrial operons, 5 of which have never been studied. Using multiplex PCR, the prevalence of these 12 and 3 additional fimbrial types was determined for a collection of 303 E. coli isolates (57 human commensal, 32 animal commensal, 54 asymptomatic bacteriuria, 45 complicated UTI, 38 uncomplicated cystitis, and 77 pyelonephritis). The number of fimbrial types per E. coli isolate was distributed bimodally: those with low (3.2 ± 1.1) and those with high (8.3 ± 1.3) numbers of fimbrial types (means ± standard errors of the means). The fimbrial genes ygiL , yadN , yfcV , and c2395 were significantly more prevalent among urine isolates than human commensal isolates. The effect of deletion of Ygi and Yad fimbrial operons on growth, motility, biofilm formation, adherence to immortalized human epithelial cells, and pathogenesis in the mouse model of UTI was examined. Yad fimbriae were necessary for wild-type levels of adherence to a bladder epithelial cell line and for biofilm formation. Deletion of these fimbrial genes increased motility. Ygi fimbriae were necessary for wild-type levels of adherence to a human embryonic kidney cell line, biofilm formation, and in vivo fitness in the urine and kidneys. Complementation of each fimbrial mutant restored wild-type levels of motility, biofilm formation, adherence and, for ygi , in vivo fitness. A double deletion strain, Δ ygi Δyad , was attenuated in the urine, bladder, and kidneys in the mouse model, demonstrating that these fimbriae contribute to uropathogenesis.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Infection and Immunity, American Society for Microbiology, Vol. 70, No. 2 ( 2002-02), p. 1027-1031
    Abstract: Recent genomic analyses of Escherichia coli O157:H7 strain EDL933 revealed two loci encoding urease gene homologues ( ureDABCEFG ), which are absent in nonpathogenic E. coli strain K-12. This report demonstrates that the cloned EDL933 ure gene cluster is capable of synthesizing urease in an E. coli DH5α background. However, when the gene fragment is transformed back into the native EDL933 background, the enzymatic activity of the cloned determinants is undetectable. We speculate that an unidentified trans -acting factor in enterohemorrhagic E. coli (EHEC) is responsible for this regulation of ure expression. In addition, Fur-like recognition sites are present in three independent O157:H7 isolates upstream of ureD and ureA . Enzymatic assays confirmed a difference in urease expression of cloned EHEC ure clusters in E. coli MC3100Δ fur . Likewise, interruption of fur in O157:H7 isolate IN1 significantly diminished urease activity. We propose that, similar to the function of Fur in regulating the acid response of Salmonella enterica serovar Typhimurium, it modulates urease expression in EHEC, perhaps contributing to the acid tolerance of the organism.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: mBio, American Society for Microbiology, Vol. 6, No. 3 ( 2015-07)
    Abstract: Klebsiella pneumoniae is a bacterium that commonly causes pneumonia in patients after they are admitted to the hospital. K. pneumoniae is becoming resistant to all available antibiotics, and when these infections spread to the bloodstream, over half of patients die. Since currently available antibiotics are failing, we must discover new ways to treat these infections. In this study, we asked what genes the bacterium needs to cause an infection, since the proteins encoded by these genes could be targets for new antibiotics. We identified over 300 genes that K. pneumoniae requires to grow in a mouse model of pneumonia. Many of the genes that we identified are found in K. pneumoniae isolates from throughout the world, including antibiotic-resistant forms. If new antibiotics could be made against the proteins that these genes encode, they may be broadly effective against K. pneumoniae.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...