GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 1 ( 2022-02-23)
    Abstract: Hepatitis E virus (HEV) infection is a global public health concern. Although HEV infection is usually asymptomatic and self-limiting, extrahepatic manifestations and chronic infections in immunocompromised patients have been described. HEV strains infecting humans have been classified into four main genotypes. In this study we have developed and validated a novel sensitive real-time RT-PCR assay for the detection of all four HEV genotypes. Simultaneous discrimination of genotypes 1, 2, and 4 from genotype 3 by single nucleotide polymorphism (SNP) analysis was possible. In all, 201 serum samples from cases and carriers previously tested for HEV by nested RT-PCR were analyzed. Twenty-seven HEV-positive samples could not be typed by the nested RT-PCR and nucleotide sequencing, but were newly typed by SNP analysis. As polymorphisms were present at the primer or probe binding site, we adopted a degenerate primer and mixed probes. When a mixed probe was added, the fluorescence intensity increased, facilitating genotype determination. IMPORTANCE The distribution of HEV-3 and HEV-4 has been changing. HEV-4, which had been predominantly found in Asia, is now being detected in other parts of the world, and there are now reports of chronic infections. Additionally, neurological disorders have frequently been reported in patients with acute or chronic HEV infections. HEV-4 has also been shown to lead to a higher severity in terms of acute hepatitis than does HEV-3. Early typing can provide useful information regarding the route of infection and for tailoring treatment to the expected course of the disease. The present method afforded a good detection rate even when polymorphisms were present within the target region for viral gene detection. We believe that this method can be applied to the analysis of mutation-prone viral genes in the future.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 5 ( 2022-10-26)
    Abstract: This study aimed to calibrate hepatitis E virus (HEV) serological assays. We optimized the previously developed in-house HEV antibody enzyme-linked immunosorbent assay (ELISA) by setting the cutoff with an in-house serological performance panel consisting of broad HEV antibody titers and subtracting nonspecific background values for anti-HEV IgM, IgA, and IgG. We also compared the assay’s performance with that of commercial serological assay kits (four kits for IgM, one for IgA, and two for IgG). Although all serological assays readily detected HEV antibodies at high titers in the symptomatic hepatitis E population, considerable variations between assays were observed in the asymptomatic population. The in-house ELISA showed a higher sensitivity for HEV IgM, IgA, and IgG than the commercial kits and detected the seroconversion of HEV IgM and IgG earlier when testing a commercially available HEV seroconversion panel. The low sensitivity of the commercial kits was due to the high setting of the original cutoff, which was demonstrated by receiver operating characteristic analysis. However, the corrected cutoff value reduced assay specificity. Background subtraction is essential to achieve high specificity because the in-house ELISA without background subtraction reduced its specificity. These results indicate that asymptomatic specimens and background subtraction contribute to the optimization of HEV serological assays. IMPORTANCE Accurate diagnosis of hepatitis E virus (HEV) infection is essential for public health surveillance and for preventing HEV-contaminated blood transfusion. Anti-HEV IgM or IgA is used as a reliable marker of recent HEV infection. However, considerable variability in the sensitivity and specificity of HEV antibody detection is observed among several commercially available assay kits. In addition, none of the HEV antibody detection methods have been approved by the U.S. Food and Drug Administration (FDA). Here, we show that the in-house enzyme-linked immunosorbent assay (ELISA) could detect HEV IgM and IgA more sensitively than commercial kits in the asymptomatic population. We also suggest that the assay performance of commercial kits might be improved by optimizing the cutoff and reducing nonspecific background noise. A sensitive serological (IgM or IgA) assay in addition to HEV RNA testing will contribute to accurate diagnosis of acute HEV infection because HEV RNA-positive duration is relatively short.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...