GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
  • 1
    In: mBio, American Society for Microbiology, Vol. 10, No. 3 ( 2019-06-25)
    Abstract: HBsAg and HBeAg have gained traction as biomarkers of control and clearance during chronic hepatitis B virus infection (CHB). Improved understanding of the clearance correlates of these proteins could help inform improvements in patient-stratified care and advance insights into the underlying mechanisms of disease control, thus underpinning new cure strategies. We collected electronic clinical data via an electronic pipeline supported by the National Institute for Health Research Health Informatics Collaborative (NIHR HIC), adopting an unbiased approach to the generation of a robust longitudinal data set for adults testing HBsAg positive from a large UK teaching hospital over a 6-year period (2011 to 2016 inclusive). Of 553 individuals with CHB, longitudinal data were available for 319, representing 〉 107,000 weeks of clinical follow-up. Among these 319 individuals, 13 (4%) cleared HBsAg completely. Among these 13, the HBsAg clearance rate in individuals on nucleos(t)ide analogue (NA) therapy ( n  = 4 [31%]; median clearance time,150 weeks) was similar to that in individuals not on NA therapy ( n  = 9 [69%]; median clearance time, 157 weeks). Those who cleared HBsAg were significantly older and less likely to be on NA therapy than nonclearers ( P  = 0.003 and P  = 0.001, respectively). Chinese ethnicity was associated with HBeAg positivity ( P  = 0.025). HBeAg clearance occurred in individuals both on NA therapy ( n  = 24; median time, 49 weeks) and off NA therapy ( n  = 19; median time, 52 weeks). Improved insights into the dynamics of these biomarkers can underpin better prognostication and patient-stratified care. Our systematized approach to data collection paves the way for scaling up efforts to harness clinical data to address research questions and support improvements in clinical care. IMPORTANCE Advances in the diagnosis, monitoring, and treatment of hepatitis B virus (HBV) infection are urgently required if we are to meet international targets for elimination by the year 2030. Here we demonstrate how routine clinical data can be harnessed through an unbiased electronic pipeline, showcasing the significant potential for amassing large clinical data sets that can help to inform advances in patient care and provide insights that may help to inform new cure strategies. Our cohort from a large UK hospital includes adults from diverse ethnic groups that have previously been underrepresented in the literature. By tracking two protein biomarkers that are used to monitor chronic HBV infection, we provide new insights into the timelines of HBV clearance, both on and off treatment. These results contribute to improvements in individualized clinical care and may provide important clues into the immune events that underpin disease control.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 58, No. 1 ( 2019-12-23)
    Abstract: Influenza is a major global public health threat as a result of its highly pathogenic variants, large zoonotic reservoir, and pandemic potential. Metagenomic viral sequencing offers the potential for a diagnostic test for influenza virus which also provides insights on transmission, evolution, and drug resistance and simultaneously detects other viruses. We therefore set out to apply the Oxford Nanopore Technologies sequencing method to metagenomic sequencing of respiratory samples. We generated influenza virus reads down to a limit of detection of 10 2 to 10 3 genome copies/ml in pooled samples, observing a strong relationship between the viral titer and the proportion of influenza virus reads ( P  = 4.7 × 10 −5 ). Applying our methods to clinical throat swabs, we generated influenza virus reads for 27/27 samples with mid-to-high viral titers (cycle threshold [ C T ] values, 〈 30) and 6/13 samples with low viral titers ( C T values, 30 to 40). No false-positive reads were generated from 10 influenza virus-negative samples. Thus, Nanopore sequencing operated with 83% sensitivity (95% confidence interval [CI], 67 to 93%) and 100% specificity (95% CI, 69 to 100%) compared to the current diagnostic standard. Coverage of full-length virus was dependent on sample composition, being negatively influenced by increased host and bacterial reads. However, at high influenza virus titers, we were able to reconstruct 〉 99% complete sequences for all eight gene segments. We also detected a human coronavirus coinfection in one clinical sample. While further optimization is required to improve sensitivity, this approach shows promise for the Nanopore platform to be used in the diagnosis and genetic analysis of influenza virus and other respiratory viruses.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...