GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Journal of Virology Vol. 78, No. 13 ( 2004-07), p. 7284-7287
    In: Journal of Virology, American Society for Microbiology, Vol. 78, No. 13 ( 2004-07), p. 7284-7287
    Abstract: Recent advances in class II tetramer staining technology have allowed reliable direct ex vivo visualization of antigen-specific CD4 T cells. In order to define the frequency and phenotype of a prototype response to a nonpersistent pathogen, we have used such techniques to analyze influenza virus-specific memory CD4 T cells directly from blood. These responses are stably detectable ex vivo at low frequencies (range, 0.00012 to 0.0061% of CD4 T cells) and display a distinct “central memory” CD62L + phenotype.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology
    Abstract: Infections due to nontuberculous mycobacteria (NTM) continue to increase in prevalence, leading to problematic clinical outcomes. Omadacycline (OMC) is an aminomethylcycline antibiotic with FDA orphan drug and fast-track designations for pulmonary NTM infections, including Mycobacteroides abscessus (MAB). This multicenter retrospective study across 16 U.S. medical institutions from January 2020 to March 2023 examined the long-term clinical success, safety, and tolerability of OMC for NTM infections. The cohort included patients aged ≥18 yr, who were clinically evaluable, and` had been treated with OMC for ≥3 mo without a previous diagnosis of cystic fibrosis. The primary outcome was 3 mo clinical success, with secondary outcomes including clinical improvement and mortality at 6- and 12 mo, persistence or reemergence of infection, adverse effects, and reasons for OMC utilization. Seventy-five patients were included in this analysis. Most patients were female (48/75, 64.0%) or Caucasian (58/75, 77.3%), with a median (IQR) age of 59 yr (49–67). Most had NTM pulmonary disease (33/75, 44.0%), skin and soft tissue disease (19/75, 25.3%), or osteomyelitis (10/75, 13.3%), and Mycobacterium abscessus (60/75, 80%) was the most commonly isolated NTM pathogen. The median (IQR) treatment duration was 6 mo ( 4 – 14 ), and the most commonly co-administered antibiotic was azithromycin (33/70, 47.1%). Three-month clinical success was observed in 80.0% (60/75) of patients, and AEs attributable to OMC occurred in 32.0% (24/75) of patients, leading to drug discontinuation in 9.3% (7/75).
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 93, No. 2 ( 2019-01-15)
    Abstract: The hemagglutinin (HA), a glycoprotein on the surface of influenza A virus (IAV), initiates the virus life cycle by binding to terminal sialic acid (SA) residues on host cells. The HA gradually accumulates amino acid substitutions that allow IAV to escape immunity through a mechanism known as antigenic drift. We recently confirmed that a small set of amino acid residues are largely responsible for driving antigenic drift in swine-origin H3 IAV. All identified residues are located adjacent to the HA receptor binding site (RBS), suggesting that substitutions associated with antigenic drift may also influence receptor binding. Among those substitutions, residue 145 was shown to be a major determinant of antigenic evolution. To determine whether there are functional constraints to substitutions near the RBS and their impact on receptor binding and antigenic properties, we carried out site-directed mutagenesis experiments at the single-amino-acid level. We generated a panel of viruses carrying substitutions at residue 145 representing all 20 amino acids. Despite limited amino acid usage in nature, most substitutions at residue 145 were well tolerated without having a major impact on virus replication in vitro . All substitution mutants retained receptor binding specificity, but the substitutions frequently led to decreased receptor binding. Glycan microarray analysis showed that substitutions at residue 145 modulate binding to a broad range of glycans. Furthermore, antigenic characterization identified specific substitutions at residue 145 that altered antibody recognition. This work provides a better understanding of the functional effects of amino acid substitutions near the RBS and the interplay between receptor binding and antigenic drift. IMPORTANCE The complex and continuous antigenic evolution of IAVs remains a major hurdle for vaccine selection and effective vaccination. On the hemagglutinin (HA) of the H3N2 IAVs, the amino acid substitution N 145 K causes significant antigenic changes. We show that amino acid 145 displays remarkable amino acid plasticity in vitro , tolerating multiple amino acid substitutions, many of which have not yet been observed in nature. Mutant viruses carrying substitutions at residue 145 showed no major impairment in virus replication in the presence of lower receptor binding avidity. However, their antigenic characterization confirmed the impact of the 145 K substitution in antibody immunodominance. We provide a better understanding of the functional effects of amino acid substitutions implicated in antigenic drift and its consequences for receptor binding and antigenicity. The mutation analyses presented in this report represent a significant data set to aid and test the ability of computational approaches to predict binding of glycans and in antigenic cartography analyses.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: mBio, American Society for Microbiology
    Abstract: To counteract infection with phage, bacteria have evolved a myriad of molecular defense systems. Some of these systems initiate a process called abortive infection, in which the infected cell kills itself to prevent phage propagation. However, such systems must be inhibited in the absence of phage infection to prevent spurious death of the host. Here, we show that the cyclic oligonucleotide based anti-phage signaling system (CBASS) accomplishes this by sensing intracellular folate molecules and only expressing this system in a group. These results enhance our understanding of the evolution of the seventh Vibrio cholerae pandemic and more broadly how bacteria defend themselves against phage infection.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Virology, American Society for Microbiology, Vol. 93, No. 6 ( 2019-03-15)
    Abstract: Influenza A viruses (IAVs) remain a significant public health threat, causing more than 300,000 hospitalizations in the United States during the 2015–2016 season alone. While only a few IAVs of avian origin have been associated with human infections, the ability of these viruses to cause zoonotic infections further increases the public health risk of influenza. Of these, H9N2 viruses in Asia are of particular importance as they have contributed internal gene segments to other emerging zoonotic IAVs. Notably, recent H9N2 viruses have acquired molecular markers that allow for a transition from avian-like to human-like terminal sialic acid (SA) receptor recognition via a single amino acid change at position 226 (H3 numbering), from glutamine (Q226) to leucine (L226), within the hemagglutinin (HA) receptor-binding site (RBS). We sought to determine the plasticity of amino acid 226 and the biological effects of alternative amino acids on variant viruses. We created a library of viruses with the potential of having any of the 20 amino acids at position 226 on a prototypic H9 HA subtype IAV. We isolated H9 viruses that carried naturally occurring amino acids, variants found in other subtypes, and variants not found in any subtype at position 226. Fitness studies in quails revealed that some natural amino acids conferred an in vivo replication advantage. This study shows the flexibility of position 226 of the HA of H9 influenza viruses and the resulting effect of single amino acid changes on the phenotype of variants in vivo and in vitro . IMPORTANCE A single amino acid change at position 226 in the hemagglutinin (HA) from glutamine (Q) to leucine (L) has been shown to play a key role in receptor specificity switching in various influenza virus HA subtypes, including H9. We tested the flexibility of amino acid usage and determined the effects of such changes. The results reveal that amino acids other than L226 and Q226 are well tolerated and that some amino acids allow for the recognition of both avian and human influenza virus receptors in the absence of other changes. Our results can inform better avian influenza virus surveillance efforts as well as contribute to rational vaccine design and improve structural molecular dynamics algorithms.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 11, No. 1 ( 2023-02-14)
    Abstract: The Centers for Disease Control and Prevention (CDC) categorized carbapenem-resistant Enterobacterales (CRE) infections as an “urgent” health care threat requiring public attention and research. Certain patients with CRE infections may be at higher risk for poor clinical outcomes than others. Evidence on risk or protective factors for CRE infections are warranted in order to determine the most at-risk populations, especially with newer beta-lactam/beta-lactamase inhibitor (BL/BLI) antibiotics available to treat CRE. We aimed to identify specific variables involved in CRE treatment that are associated with clinical failure (either 30-day mortality, 30-day microbiologic recurrence, or clinical worsening/failure to improve throughout antibiotic treatment). We conducted a retrospective, observational cohort study of hospitalized patients with CRE infection sampled from 2010 to 2020 at two medical systems in Detroit, Michigan. Patients were included if they were ≥18 years old and culture positive for an organism in the Enterobacterales order causing clinical infection with in vitro resistance by Clinical and Laboratory Standards Institute (CLSI) breakpoints to at least one carbapenem. Overall, there were 140 confirmed CRE infections of which 39% had clinical failure. The most common infection sources were respiratory (38%), urinary (20%), intra-abdominal (16%), and primary bacteremia (14%). A multivariable logistic regression model was developed to identify statistically significant associated predictors with clinical failure, and they included Sequential Organ Failure Assessment (SOFA) score (adjusted odds ratio [aOR], 1.18; 95% confidence interval [CI] , 1.06 to 1.32), chronic dialysis (aOR, 5.86; 95% CI, 1.51-22.7), and Klebsiella pneumoniae in index culture (aOR, 3.09; 95% CI, 1.28 to 7.47). Further research on CRE infections is needed to identify best practices to promote treatment success. IMPORTANCE This work compares carbapenem-resistant Enterobacterales (CRE) infections using patient, clinical, and treatment variables to understand which characteristics are associated with the highest risk of clinical failure. Knowing which risk factors are associated with CRE infection failure can provide clinicians better prognostic and targeted interventions. Research can also further investigate why certain risk factors cause more clinical failure and can help develop treatment strategies to mitigate associated risk factors.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 192, No. 24 ( 2010-12-15), p. 6497-6498
    Abstract: Methylosinus trichosporium OB3b (for “oddball” strain 3b) is an obligate aerobic methane-oxidizing alphaproteobacterium that was originally isolated in 1970 by Roger Whittenbury and colleagues. This strain has since been used extensively to elucidate the structure and function of several key enzymes of methane oxidation, including both particulate and soluble methane monooxygenase (sMMO) and the extracellular copper chelator methanobactin. In particular, the catalytic properties of soluble methane monooxygenase from M. trichosporium OB3b have been well characterized in context with biodegradation of recalcitrant hydrocarbons, such as trichloroethylene. The sequence of the M. trichosporium OB3b genome is the first reported from a member of the Methylocystaceae family in the order Rhizobiales .
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 79, No. 5 ( 2013-03), p. 1639-1645
    Abstract: Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts from C. albicans grown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: mSphere, American Society for Microbiology, Vol. 6, No. 4 ( 2021-08-25)
    Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity was assessed for 3,066 individuals visiting hospitals in St. Louis, Missouri, during July 2020, November 2020, or January 2021. Seropositivity in children increased from 5.22% in July to 21.16% in January. In the same time frame, seropositivity among adults increased from 4.52% to 19.03%, prior to initiation of mass vaccination. IMPORTANCE This study determined the percentage of children and adult samples from the St. Louis metropolitan area in Missouri with SARS-CoV-2 antibodies during three collection periods spanning July 2020 to January 2021. By January 2021, 20.68% of the tested individuals had antibodies. These results show the evolution of the SARS-CoV-2 pandemic in St. Louis, Missouri, and provide a snapshot of the extent of infection just prior to the start of mass vaccination.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 67, No. 4 ( 2023-04-18)
    Abstract: Acne vulgaris is a complex skin disease involving infection by Cutibacterium acnes , inflammation, and hyperkeratinization. We evaluated the activity of the retinoid 6-[3-(adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and 16 other retinoid analogs as potential anti- C. acnes compounds and found that CD437 displayed the highest antimicrobial activity with an MIC against C. acnes (ATCC 6919 and HM-513) of 1 μg/mL. CD437 demonstrated an MBC of 2 μg/mL compared to up to 64 μg/mL for the retinoid adapalene and up to 16 μg/mL for tetracycline, which are commonly used clinically to treat acne. Membrane permeability assays demonstrated that exposure of C. acnes ATCC 6919 to CD437 damaged the integrity of C. acnes ATCC 6919 bacterial membranes, and this finding was confirmed with scanning electron microscopy. Additionally, CD437 downregulated the expression of C. acnes ATCC 6919 virulence factors, including the genes encoding Christie-Atkins-Munch-Petersen factor 1 (CAMP1), CAMP2, glycerol-ester hydrolase B (GehB), sialidase B, and neuraminidase. In a mouse skin infection model of C. acnes ATCC 6919, topical treatment with CD437 ameliorated skin lesions and reduced the bacterial burden in situ ( P 〈 0.001). In human NHEK primary cells, CD437 reduced the transcriptional levels of the coding genes for inflammatory cytokines (interleukin-1α, ~10-fold; interleukin-6, ~20-fold; interleukin-8, ~30-fold; and tumor necrosis factor-alpha, ~6-fold) and downregulated the transcriptional levels of KRT10 (~10-fold), FLG (~4-fold), and TGM1 (~2-fold), indicating that CD437 can diminish inflammation and hyperkeratinization. In summary, CD437 deserves further attention for its dual function as a potential acne therapeutic that potentially acts on both the pathogen and the host.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...