GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (6)
  • 1
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 52, No. 9 ( 2014-09), p. 3237-3243
    Abstract: Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of deer, elk, and moose, is the only prion disease affecting free-ranging animals. Since the disease was first identified in northern Colorado and southern Wyoming in 1967, new epidemic foci of the disease have been identified in 20 additional states, as well as two Canadian provinces and the Republic of South Korea. Identification of CWD-affected animals currently requires postmortem analysis of brain or lymphoid tissues using immunohistochemistry (IHC) or an enzyme-linked immunosorbent assay (ELISA), with no practical way to evaluate potential strain types or to investigate the epidemiology of existing or novel foci of disease. Using a standardized real-time (RT)-quaking-induced conversion (QuIC) assay, a seeded amplification assay employing recombinant prion protein as a conversion substrate and thioflavin T (ThT) as an amyloid-binding fluorophore, we analyzed, in a blinded manner, 1,243 retropharyngeal lymph node samples from white-tailed deer, mule deer, and moose, collected in the field from areas with current or historic CWD endemicity. RT-QuIC results were then compared with those obtained by conventional IHC and ELISA, and amplification metrics using ThT and thioflavin S were examined in relation to the clinical history of the sampled deer. The results indicate that RT-QuIC is useful for both identifying CWD-infected animals and facilitating epidemiological studies in areas in which CWD is endemic or not endemic.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 92, No. 15 ( 2018-08)
    Abstract: Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area. IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2015
    In:  Journal of Clinical Microbiology Vol. 53, No. 4 ( 2015-04), p. 1342-1344
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 53, No. 4 ( 2015-04), p. 1342-1344
    Abstract: The EasyNAT assay was evaluated for the detection of tuberculosis in sputum smears from presumptive pulmonary tuberculosis (TB) patients in an African high-TB and high-HIV setting. The sensitivity of the EasyNAT assay was 66.7%, and the specificity and positive predictive value were 100% for the culture-positive patients. The sensitivity was only 10% in the smear-negative and culture-positive patients.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Virology, American Society for Microbiology, Vol. 56, No. 3 ( 1985-12), p. 938-942
    Abstract: The induction of thymic lymphomas by Moloney murine leukemia virus in the rat is linked to provirus integration in at least four independent cellular DNA regions (Mlvi-1, Mlvi-2, Mlvi-3, and c-myc). Because sequences homologous to at least three of these regions (Mlvi-1, Mlvi-2, and c-myc) map to chromosome 15 in the mouse, the question was raised whether they are closely linked in the rat genome and whether provirus integration in any one of these regions affects the same functional domain in rat DNA. In this study, we identified the chromosomal map location of Mlvi-1, Mlvi-2, and Mlvi-3 in the rat by using mouse-rat somatic cell hybrids that lose the rat chromosomes. The results showed that Mlvi-1 maps similarly to c-myc to chromosome 7, and Mlvi-2 maps to chromosome 2. Mlvi-3 probably maps to chromosome 15. We conclude that Mlvi-1, Mlvi-2, and Mlvi-3 are separate and independent genetic loci. Although Mlvi-1 and c-myc map to the same chromosome, they are not related, as determined by hybridization and restriction endonuclease mapping. The chromosomal map location of Mlvi-1 to chromosome 7 and Mlvi-2 to chromosome 2 is interesting, since chromosomal aberrations involving these two chromosomes are reproducibly observed in rat neoplasias induced by a variety of agents.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1985
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 54, No. 5 ( 2016-05), p. 1276-1281
    Abstract: Pyrazinamide (PZA) is a key antituberculosis drug, yet no rapid susceptibility test is commercially available. PZA drug susceptibility testing (DST) was performed directly on sputum samples from 327 patients and compared with the indirect method by using the Bactec MGIT 960 system in the context of patient screening for participation in a drug trial. Compared to standard indirect PZA DST, direct DST was successful in only 59% of cases, but results obtained were highly accurate and available faster. Agreement between the direct and indirect methods varied from 90 to 100% in each laboratory. The median times for obtaining PZA results from the time when the specimen was collected ranged from 11 to 16 days for the direct test and 18 to 95 days for the indirect test across laboratories. The direct method is accurate and reproducible across laboratories. It can be expected to accelerate results in 〉 50% of cases, but it cannot replace indirect DST for PZA. Phenotypic methods remain the gold standard for DST in drug trials. If future studies can optimize the method to decrease the number of uninterpretable results, direct MGIT DST could be the new phenotypic DST standard for clinical trials, providing more rapid detection of resistance to new drugs in experimental regimens.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: mBio, American Society for Microbiology
    Abstract: The rapidly emerging fungal pathogen Candida auris represents a growing threat to hospitalized patients, in part due to frequent resistance to multiple classes of antifungal drugs. We identify a class of compounds, the dihalogenated 8-hydroxyquinolines, with broad fungistatic ability against a diverse collection of 13 strains of C. auris . Although this compound has been identified in previous screens, we extended the analysis by showing that C. auris developed only modest twofold to fivefold increases in resistance to this class of compounds despite long-term exposure; a noticeable difference from the 30- to 500-fold increases in resistance reported for similar studies with commonly used antifungal drugs. We also identify the mutations underlying the resistance. These results suggest that the dihalogenated 8-hydroxyquinolines are working inside the fungal cell and should be developed further to combat C. auris and other fungal pathogens. Lohse and colleagues characterize a class of compounds that inhibit the fungal pathogen C. auris . Unlike many other antifungal drugs, C. auris does not readily develop resistance to this class of compounds.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...