GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 80, No. 5 ( 2012-05), p. 1639-1649
    Abstract: Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO 3 − ) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Here, we uncovered the molecular basis of anaerobiosis-triggered cell elongation and identified vitamin B 12 to be a molecule that can reinstate defective anaerobic growth of P. aeruginosa . The ratio of total cellular DNA content to protein content was significantly decreased in the PAO1 strain grown under anaerobic conditions, indicating that DNA replication is impaired during anaerobic growth. Anaerobic growth of PAO1 reached a higher cell density in the presence of vitamin B 12 , an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape and transcription of stress-response genes was downregulated under the same anaerobic growth conditions. These results suggest that vitamin B 12 , the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. Importantly, biofilm formation was substantially decreased when grown with vitamin B 12 , further demonstrating that anaerobiosis-induced cell elongation is responsible for robust biofilm formation. Taken together, our data reveal mechanistic details of a morphological change that naturally occurs during anaerobic growth of P. aeruginosa and illustrates the ability of vitamin B 12 to modulate the biofilm-forming capacity of P. aeruginosa under such condition.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Applied and Environmental Microbiology Vol. 79, No. 12 ( 2013-06-15), p. 3829-3838
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 79, No. 12 ( 2013-06-15), p. 3829-3838
    Abstract: Evidence suggests that gut microbes colonize the mammalian intestine through propagation as an adhesive microbial community. A bacterial artificial chromosome (BAC) library of murine bowel microbiota DNA in the surrogate host Escherichia coli DH10B was screened for enhanced adherence capability. Two out of 5,472 DH10B clones, 10G6 and 25G1, exhibited enhanced capabilities to adhere to inanimate surfaces in functional screens. DNA segments inserted into the 10G6 and 25G1 clones were 52 and 41 kb and included 47 and 41 protein-coding open reading frames (ORFs), respectively. DNA sequence alignments, tetranucleotide frequency, and codon usage analysis strongly suggest that these two DNA fragments are derived from species belonging to the genus Bacteroides . Consistent with this finding, a large portion of the predicted gene products were highly homologous to those of Bacteroides spp. Transposon mutagenesis and subsequent experiments that involved heterologous expression identified two operons associated with enhanced adherence. E. coli strains transformed with the 10a or 25b operon adhered to the surface of intestinal epithelium and colonized the mouse intestine more vigorously than did the control strain. This study has revealed the genetic determinants of unknown commensals (probably resembling Bacteroides species) that enhance the ability of the bacteria to colonize the murine bowel.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...