GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 60, No. 12 ( 2016-12), p. 7105-7114
    Abstract: It is largely unknown if simultaneous administration of tuberculosis (TB) drugs and metformin leads to drug-drug interactions (DDIs). Disposition of metformin is determined by organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs). Thus, any DDIs would primarily be mediated via these transporters. This study aimed to assess the in vitro inhibitory effects of TB drugs (rifampin, isoniazid, pyrazinamide, ethambutol, amikacin, moxifloxacin, and linezolid) on metformin transport and whether TB drugs are also substrates themselves of OCTs and MATEs. HEK293 cells overexpressing OCT1, OCT2, OCT3, MATE1, and MATE2K were used to study TB drug-mediated inhibition of [ 14 C]metformin uptake and to test if TB drugs are transporter substrates. Metformin uptake was determined by quantifying [ 14 C]metformin radioactivity, and TB drug uptake was analyzed using liquid chromatography-tandem mass spectrometry. DDI indices were calculated (plasma maximum concentrations [ C max ]/50% inhibitory concentrations [IC 50 ]), and based on the literature, a cutoff of 〉 0.1 was assumed to warrant further in vivo investigation. Moxifloxacin was the only TB drug identified as a potent inhibitor (DDI index of 〉 0.1) of MATE1- and MATE2K-mediated metformin transport, with IC 50 s of 12 μM (95% confidence intervals [CI], 5.1 to 29 μM) and 7.6 μM (95% CI, 0.2 to 242 μM), respectively. Of all TB drugs, only ethambutol appeared to be a substrate of OCT1, OCT2, OCT3, MATE1, and MATE2K. MATE1-mediated ethambutol uptake was inhibited strongly (DDI index of 〉 0.1) by moxifloxacin (IC 50 , 12 μM [95% CI, 3.4 to 43 μM]). Our findings provide a mechanistic basis for DDI predictions concerning ethambutol. According to international guidelines, an in vivo interaction study is warranted for the observed in vitro interaction between ethambutol and moxifloxacin.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2020
    In:  Antimicrobial Agents and Chemotherapy Vol. 64, No. 10 ( 2020-09-21)
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 64, No. 10 ( 2020-09-21)
    Abstract: Single nucleotide polymorphisms in the OATP1B1 transporter have been suggested to partially explain the large interindividual variation in rifampicin exposure. HEK293 cells overexpressing wild-type (WT) or OATP1B1 variants *1b, *4, *5, and *15 were used to determine the in vitro rifampicin intrinsic clearance. For OATP1B1*5 and *15, a 36% and 42% reduction in intrinsic clearance, respectively, compared to WT was found. We consider that these differences in intrinsic clearance most likely have minor clinical implications.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 54, No. 5 ( 2010-05), p. 1762-1768
    Abstract: The current interest in malaria elimination has led to a renewed interest in drugs that can be used for mass administration to minimize malaria transmission. Primaquine (PQ) is the only generally available drug with a strong activity against mature P lasmodium falciparum gametocytes, the parasite stage responsible for transmission. Despite concerns about PQ-induced hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals, a single dose of PQ may be safe and efficacious in clearing gametocytes that persist after conventional treatment. As part of a mass drug intervention, we determined the hemolytic effect of sulfadoxine-pyrimethamine (SP) plus artesunate (AS) plus a single dose of primaquine (PQ; 0.75 mg/kg of body weight) in children aged 1 to 12 years. Children were randomized to receive SP+AS+PQ or placebo; those with a hemoglobin (Hb) level below 8 g/dl were excluded from receiving PQ and received SP+AS. The Hb concentration was significantly reduced 7 days after SP+AS+PQ treatment but not after placebo or SP+AS treatment. This reduction in Hb was most pronounced in G6PD-deficient (G6PD A−) individuals (−2.5 g/dl; 95% confidence interval [95% CI], −1.2 to −3.8 g/dl) but was also observed in heterozygotes (G6PD A) (−1.6 g/dl; 95% CI, −0.9 to −2.2 g/dl) and individuals with the wild-type genotype (G6PD B) (−0.5 g/dl; 95% CI, −0.4 to −0.6 g/dl). Moderate anemia (Hb level of 〈 8 g/dl) was observed in 40% (6/15 individuals) of the G6PD A−, 11.1% (3/27 individuals) of the G6PD A, and 4.5% (18/399 individuals) of the G6PD B individuals; one case of severe anemia (Hb level of 〈 5 g/dl) was observed. PQ may cause moderate anemia when coadministered with artemisinins, and excluding individuals based on G6PD status alone may not be sufficient to prevent PQ-induced hemolysis.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 60, No. 6 ( 2016-06), p. 3372-3379
    Abstract: Inhibition of ABC transporters is a common mechanism underlying drug-drug interactions (DDIs). We determined the inhibitory potential of antifungal drugs currently used for invasive fungal infections on ABC transporters P-glycoprotein (P-gp), MRP1 to MRP5, BCRP, and BSEP in vitro . Membrane vesicles isolated from transporter-overexpressing HEK 293 cells were used to investigate the inhibitory potential of antifungal drugs (250 μM) on transport of model substrates. Concentration-inhibition curves were determined if transport inhibition was 〉 60%. Fifty percent inhibitory concentrations (IC 50 s) for P-gp and BCRP were both 2 μM for itraconazole, 5 and 12 μM for hydroxyitraconazole, 3 and 6 μM for posaconazole, and 3 and 11 μM for isavuconazole, respectively. BSEP was strongly inhibited by itraconazole and hydroxyitraconazole (3 and 17 μM, respectively). Fluconazole and voriconazole did not inhibit any transport for 〉 60%. Micafungin uniquely inhibited all transporters, with strong inhibition of MRP4 (4 μM). Anidulafungin and caspofungin showed strong inhibition of BCRP (7 and 6 μM, respectively). Amphotericin B only weakly inhibited BCRP-mediated transport (127 μM). Despite their wide range of DDIs, azole antifungals exhibit selective inhibition on efflux transporters. Although echinocandins display low potential for clinically relevant DDIs, they demonstrate potent in vitro inhibitory activity. This suggests that inhibition of ABC transporters plays a crucial role in the inexplicable (non-cytochrome P450-mediated) DDIs with antifungal drugs.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...