GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
  • 1
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 49, No. 4 ( 2005-04), p. 1509-1520
    Abstract: C31G is currently the focus of clinical trials designed to evaluate this agent as a microbicidal and spermicidal agent. In the following studies, the in vivo safety of C31G was assessed with a Swiss Webster mouse model of cervicovaginal toxicity and correlated with results from in vitro cytotoxicity experiments and published clinical observations. A single exposure of unformulated 1% C31G resulted in mild-to-moderate epithelial disruption and inflammation at 2 and 4 h postapplication. The columnar epithelium of the cervix was the primary site of damage, while no perturbation of the vaginal mucosa was observed. In contrast, application of unformulated 1.7% C31G resulted in greater levels of inflammation in the cervical epithelium at 2 h postapplication and severe epithelial disruption that persisted to 8 h postapplication. Application of a nonionic aqueous gel formulation containing 1% C31G resulted in no apparent cervicovaginal toxicity at any time point evaluated. However, formulation of 1.7% C31G did not substantially reduce the toxicity associated with unformulated C31G at that concentration. These observations correlate with findings gathered during a recent clinical trial, in which once-daily applications resulted in no adverse events in women receiving the formulation containing 1% C31G, compared to moderate-to-severe adverse events in 30% of women receiving the 1.7% C31G formulation. The Swiss Webster mouse model was able to effectively discriminate between concentrations and formulations of C31G that produced distinct clinical effects in human trials. The Swiss Webster animal model may be a highly valuable tool for preclinical evaluation of candidate vaginal microbicides.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 48, No. 5 ( 2004-05), p. 1837-1847
    Abstract: Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was 〉 350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...