GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (6)
  • 1
    In: mBio, American Society for Microbiology, Vol. 13, No. 3 ( 2022-06-28)
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mBio, American Society for Microbiology, Vol. 13, No. 2 ( 2022-04-26)
    Abstract: Pertussis, also known as whooping cough, is a contagious respiratory disease caused by the Gram-negative bacterium Bordetella pertussis . This disease is characterized by severe and uncontrollable coughing, which imposes a significant burden on patients. However, its etiological agent and the mechanism are totally unknown because of a lack of versatile animal models that reproduce the cough. Here, we present a mouse model that reproduces coughing after intranasal inoculation with the bacterium or its components and demonstrate that lipooligosaccharide (LOS), pertussis toxin (PTx), and Vag8 of the bacterium cooperatively function to cause coughing. Bradykinin induced by LOS sensitized a transient receptor potential ion channel, TRPV1, which acts as a sensor to evoke the cough reflex. Vag8 further increased bradykinin levels by inhibiting the C1 esterase inhibitor, the major downregulator of the contact system, which generates bradykinin. PTx inhibits intrinsic negative regulation systems for TRPV1 through the inactivation of G i GTPases. Our findings provide a basis to answer long-standing questions on the pathophysiology of pertussis cough. IMPORTANCE The Gram-negative bacterium Bordetella pertussis causes a respiratory disease called whooping cough, or pertussis. This disease is characterized by paroxysmal coughing, the mechanism of which has not been intensively studied because of a lack of versatile animal models that reproduce the cough. In this study, we present a mouse model that reproduces coughing after intranasal inoculation with the bacterium or its components. Using this model, we demonstrate that lipooligosaccharide, Vag8, and pertussis toxin of the bacteria cooperatively function to cause coughing. Our results also indicate that bradykinin, an inflammatory mediator, and TRPV1, an ion channel linked to nociceptive signaling, are host factors involved in the coughing mechanism.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 93, No. 6 ( 2019-03-15)
    Abstract: Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo . We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs. IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2021
    In:  Applied and Environmental Microbiology Vol. 87, No. 2 ( 2021-01-04)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 2 ( 2021-01-04)
    Abstract: Low-temperature atmospheric-pressure plasma has been studied for disinfection purposes. When plasma is exposed to water, reactive oxygen and nitrogen species are generated and preserved in the water fraction (plasma-treated water [PTW]), which consequently exhibits bactericidal activity. At low temperatures, one of the bactericidal components of PTW is peroxynitric acid (PNA). Importantly, PNA can also be synthesized by chemical reaction, without exposure to plasma. In this study, we evaluated the bactericidal properties of PNA based on reaction kinetics in comparison with other disinfectants. The analysis, based on dose-dependent effects, showed that PNA exhibited about 1 and 10 times the bactericidal activity of hypochlorous acid (HOCl) and peracetic acid, respectively. In addition, we evaluated the influence of organic contaminants on the bactericidal effects of PNA and HOCl. The bactericidal potential of both disinfectants was reduced by bovine serum albumin (BSA); however, PNA showed about 30-times-higher resistance against BSA inhibition than HOCl. Analysis of the dose-dependent effects of PNA revealed that the inhibition of bactericidal effect was caused by its consumption. Further experiments using model substrates containing particular amino acid residues (Met, Cys, Lys, and Leu) suggested that the bacterial inactivation by PNA is less affected by BSA due to the low reactivity and narrow reactivity spectrum of PNA for amino acid residues. Overall, our results suggest that PNA has a great disinfection potential, especially in the presence of organic contaminants (e.g., on the surface of the human body and on medical instruments contaminated with biological fluids). IMPORTANCE A good disinfectant for the human body should have various properties, such as strong bactericidal activity, harmlessness to living tissues, and resistance against biological fluids (or other organic contaminants). Peroxynitric acid (PNA) showed a bactericidal effect that was several tens up to several hundred times higher per unit of molarity than that of sodium hypochlorite and peracetic acid, which are used as general disinfectants for medical equipment. Moreover, the high resistance of PNA to organic load was confirmed, indicating that PNA will inactivate bacteria effectively even on contaminated surfaces, such as used medical devices or the human body surface. Therefore, we propose that PNA can be used as a strong disinfectant for the human body.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Infection and Immunity, American Society for Microbiology, Vol. 71, No. 10 ( 2003-10), p. 5598-5604
    Abstract: It has recently been shown that human salivary glands constitutively express CD14, an important molecule in innate immunity, and that a soluble form of CD14 is secreted in saliva. The concentration of CD14 in parotid (a serous gland) saliva was comparable to that in normal serum and 10-fold the amount in whole saliva, although the physiological function of saliva CD14 remained unclear. Actinobacillus actinomycetemcomitans is a periodontopathic bacterium and is able to invade oral epithelial cells. The present study showed that upon exposure to live A. actinomycetemcomitans Y4 for 2 h, human oral epithelial HSC-2 cells produced interleukin-8 (IL-8) for a further 24 h and whole saliva augmented the production induced by A. actinomycetemcomitans Y4. Parotid saliva showed a more pronounced effect on the production of IL-8 than whole saliva. Neither saliva preparation itself had IL-8-inducing activity. Parotid saliva exhibited antibacterial activity against a low concentration of A. actinomycetemcomitans Y4, but recombinant CD14 did not show the activity. The internalization of A. actinomycetemcomitans Y4 into HSC-2 cells was inhibited by cytochalasin B, indicating that the process was actin dependent, and depletion of CD14 from parotid saliva inhibited the invasion and, as a consequence, inhibited production of IL-8. Furthermore, human recombinant CD14 augmented invasion and IL-8 production. These results suggest that saliva CD14 promoted the invasion of oral epithelial cells by A. actinomycetemcomitans and consequently augmented the production of IL-8, playing an important role in innate immunity in the oral cavity.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2003
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Infection and Immunity, American Society for Microbiology, Vol. 66, No. 10 ( 1998-10), p. 4624-4632
    Abstract: We have analyzed proteasomal adaptation and associated changes in the B27-bound peptide repertoire in response to cellular invasion with Salmonella . The peptide repertoire of HLA-B27 complexes was analyzed by two different methods: (i) high-pressure liquid chromatography (HPLC) profiles of newly synthesized peptides eluted from B27 following metabolic labeling with arginine and (ii) reactivities with two B27 monoclonal antibodies, Ye-2 and B27.M2, sensitive to peptide-induced conformational changes. LMP, MECL, and PA28 expression was analyzed by reverse transcription-PCR (RT-PCR) of mRNA and by Western blot analysis for LMP2. Invasion of HLA-B27-transfected HeLa cells by Salmonella typhimurium induced significant changes in the reactivities of HLA-B27 with these two antibodies, which was accompanied by significant quantitative and qualitative changes in the HPLC profile of peptides eluted from HLA-B27. We also observed increases in the RT-PCR values for the LMP2, LMP7, and MECL proteasome subunit genes, as well as the proteasomal activator PA28α and -β genes, and increased expression of the LMP2 protein by Western blotting. Upregulation of LMP2, but not LMP7, gene expression showed a close correlation with the changes in antibody reactivities observed upon bacterial invasion. We observed similar changes in reactivity with the Ye-2 or the B27.M2 antibody of lymphoblastoid cells upon gamma interferon treatment, which significantly correlated with the increased RT-PCR values for the LMP2 gene. This was accompanied by consistent HPLC profile changes for eluted peptides. Thus, Salmonella invasion leads to serologically recognizable changes in the B27-bound peptide repertoire, which may include peptides of host origin potentially through modulation of proteasome LMP2 subunit expression and, as a consequence, proteasomal activities.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...