GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (4)
Material
Publisher
  • American Society for Microbiology  (4)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2021
    In:  mSystems Vol. 6, No. 4 ( 2021-08-31)
    In: mSystems, American Society for Microbiology, Vol. 6, No. 4 ( 2021-08-31)
    Abstract: Adaptation is a fundamental process by which populations evolve to grow more fit in their environments. Recent studies are starting to show us that commensal microbes can evolve on short timescales of days and months, suggesting that ecological changes are not the only means by which microbes in complex natural populations respond to selection pressures. However, we still lack a complete understanding of the tempo and mode of adaptation in microbiomes given the many complex forces that natural populations experience, which include ecological pressures, changes in population size, spatial structure, and fluctuations in selection pressures. Advances in modeling complex populations and scenarios will allow us to understand adaptation not only in microbiomes but also more generically in other natural populations that experience similar complexities.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2021
    In:  mSystems Vol. 6, No. 4 ( 2021-08-31)
    In: mSystems, American Society for Microbiology, Vol. 6, No. 4 ( 2021-08-31)
    Abstract: Pathogen population dynamics during infection are critical determinants of infection susceptibility and define patterns of dissemination. However, deciphering these dynamics, particularly founding population sizes in host organs and patterns of dissemination between organs, is difficult because measuring bacterial burden alone is insufficient to observe these patterns. Introduction of allelic diversity into otherwise identical bacteria using DNA barcodes enables sequencing-based measurements of these parameters, in a method known as STAMP (Sequence Tag-based Analysis of Microbial Populations). However, bacteria often undergo unequal expansion within host organs, resulting in marked differences in the frequencies of barcodes in input and output libraries. Here, we show that these differences confound STAMP-based analyses of founding population sizes and dissemination patterns. We present STAMPR, a successor to STAMP, which accounts for such population expansions. Using data from systemic infection of barcoded extraintestinal pathogenic E. coli , we show that this new framework, along with the metrics it yields, enhances the fidelity of measurements of bottlenecks and dissemination patterns. STAMPR was also validated on an independent barcoded Pseudomonas aeruginosa data set, uncovering new patterns of dissemination within the data. This framework (available at https://github.com/hullahalli/stampr_rtisan ), when coupled with barcoded data sets, enables a more complete assessment of within-host bacterial population dynamics. IMPORTANCE Barcoded bacteria are often employed to monitor pathogen population dynamics during infection. The accuracy of these measurements is diminished by unequal bacterial expansion rates. Here, we develop computational tools to circumvent this limitation and establish additional metrics that collectively enhance the fidelity of measuring within-host pathogen founding population sizes and dissemination patterns. These new tools will benefit future studies of the dynamics of pathogens and symbionts within their respective hosts and may have additional barcode-based applications beyond host-microbe interactions.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2023
    In:  mBio Vol. 14, No. 2 ( 2023-04-25)
    In: mBio, American Society for Microbiology, Vol. 14, No. 2 ( 2023-04-25)
    Abstract: The human gut microbiome harbors substantial ecological diversity at the species level as well as at the strain level within species. In healthy hosts, species abundance fluctuations in the microbiome are thought to be stable, and these fluctuations can be described by macroecological laws. However, it is less clear how strain abundances change over time. An open question is whether individual strains behave like species themselves, exhibiting stability and following the macroecological relationships known to hold at the species level, or whether strains have different dynamics, perhaps due to the relatively close phylogenetic relatedness of cocolonizing lineages. Here, we analyze the daily dynamics of intraspecific genetic variation in the gut microbiomes of four healthy, densely longitudinally sampled hosts. First, we find that the overall genetic diversity of a large majority of species is stationary over time despite short-term fluctuations. Next, we show that fluctuations in abundances in approximately 80% of strains analyzed can be predicted with a stochastic logistic model (SLM), an ecological model of a population experiencing environmental fluctuations around a fixed carrying capacity, which has previously been shown to capture statistical properties of species abundance fluctuations. The success of this model indicates that strain abundances typically fluctuate around a fixed carrying capacity, suggesting that most strains are dynamically stable. Finally, we find that the strain abundances follow several empirical macroecological laws known to hold at the species level. Together, our results suggest that macroecological properties of the human gut microbiome, including its stability, emerge at the level of strains. IMPORTANCE To date, there has been an intense focus on the ecological dynamics of the human gut microbiome at the species level. However, there is considerable genetic diversity within species at the strain level, and these intraspecific differences can have important phenotypic effects on the host, impacting the ability to digest certain foods and metabolize drugs. Thus, to fully understand how the gut microbiome operates in times of health and sickness, its ecological dynamics may need to be quantified at the level of strains. Here, we show that a large majority of strains maintain stable abundances for periods of months to years, exhibiting fluctuations in abundance that can be well described by macroecological laws known to hold at the species level, while a smaller percentage of strains undergo rapid, directional changes in abundance. Overall, our work indicates that strains are an important unit of ecological organization in the human gut microbiome.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  mSystems Vol. 7, No. 6 ( 2022-12-20)
    In: mSystems, American Society for Microbiology, Vol. 7, No. 6 ( 2022-12-20)
    Abstract: It is not clear whether the bacterial strains that comprise our microbiota are mostly long-term colonizers or transient residents. Studies have demonstrated decades-long persistence of bacterial strains within the gut, but persistence at other body sites has yet to be determined. The vaginal microbiota (VMB) is often dominated by Lactobacillus , although it is also commonly comprised of a more diverse set of other facultative and obligate anaerobes. Longitudinal studies have demonstrated that these communities can be stable over several menstrual cycles or can fluctuate temporally in species composition. We sought to determine whether the bacterial strains that comprise the VMB were capable of persisting over longer time periods. We performed shotgun metagenomics on paired samples from 10 participants collected 1 and 2 years apart. The resulting sequences were de novo assembled and binned into high-quality metagenome assembled genomes. Persistent strains were identified based on the sequence similarity between the genomes present at the two time points and were found in the VMB of six of the participants, three of which had multiple persistent strains. The VMB of the remaining four participants was similar in species composition at the two time points but was comprised of different strains. For the persistent strains, we were able to identify the mutations that were fixed in the populations over the observed time period, giving insight into the evolution of these bacteria. These results indicate that bacterial strains can persist in the vagina for extended periods of time, providing an opportunity for them to evolve in the host microenvironment. IMPORTANCE The stability of strains within the vaginal microbiota is largely uncharacterized. Should these strains be capable of persisting for extended periods of time, they could evolve within their host in response to selective pressures exerted by the host or by other members of the community. Here, we present preliminary findings demonstrating that bacterial strains can persist in the vagina for at least 1 year. We further characterized in vivo evolution of the persistent strains. Several participants were also found to not have persistent strains, despite having a vaginal microbiota (VMB) with similar species composition at the two time points. Our observations motivate future studies that collect samples from more participants, at more time points, and over even longer periods of time. Understanding which strains persist, what factors drive their persistence, and what selective pressures they face will inform the development and delivery of rationally designed live biotherapeutics for the vagina.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...