GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (6)
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 22 ( 2017-11-15)
    Abstract: Zika virus (ZIKV) infection causees neurologic complications, including Guillain-Barré syndrome in adults and central nervous system (CNS) abnormalities in fetuses. We investigated the immune response, especially the CD8 + T cell response in C57BL/6 (B6) wild-type (WT) mice, during ZIKV infection. We found that a robust CD8 + T cell response was elicited, major histocompatibility complex class I-restricted CD8 + T cell epitopes were identified, a tetramer that recognizes ZIKV-specific CD8 + T cells was developed, and virus-specific memory CD8 + T cells were generated in these mice. The CD8 + T cells from these infected mice were functional, as evidenced by the fact that the adoptive transfer of ZIKV-specific CD8 + T cells could prevent ZIKV infection in the CNS and was cross protective against dengue virus infection. Our findings provide comprehensive insight into immune responses against ZIKV and further demonstrate that WT mice could be a natural and easy-access model for evaluating immune responses to ZIKV infection. IMPORTANCE ZIKV infection has severe clinical consequences, including Guillain-Barré syndrome in adults, microcephaly, and congenital malformations in fetuses and newborn infants. Therefore, study of the immune response, especially the adaptive immune response to ZIKV infection, is important for understanding diseases caused by ZIKV infection. Here, we characterized the CD8 + T cell immune response to ZIKV in a comprehensive manner and identified ZIKV epitopes. Using the identified immunodominant epitopes, we developed a tetramer that recognizes ZIKV-specific CD8 + T cells in vivo , which simplified the detection and evaluation of ZIKV-specific immune responses. In addition, the finding that tetramer-positive memory CD8 + T cell responses were generated and that CD8 + T cells can traffic to a ZIKV-infected brain greatly enhances our understanding of ZIKV infection and provides important insights for ZIKV vaccine design.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 89, No. 1 ( 2015-01), p. 2-13
    Abstract: The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo . These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been systematically studied. Here, the H9N2 virus was used as a genetic backbone to evaluate the virulence genes of H7N9 virus in vitro and in vivo . Our data indicate that the PB2, M, and NP genes play important roles in viral infection in mice and, together with HA and NA, contribute to the high infectivity of the H7N9 virus in humans.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2012
    In:  Journal of Virology Vol. 86, No. 9 ( 2012-05), p. 4883-4891
    In: Journal of Virology, American Society for Microbiology, Vol. 86, No. 9 ( 2012-05), p. 4883-4891
    Abstract: The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 4 ( 2022-08-31)
    Abstract: Herein, we present a new bacterial strain isolated from infected blood of a patient with diabetic nephropathy. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry failed to identify the strain. 16S rRNA gene sequencing showed the highest similarity ( 〉 99.5%) with genus Dysgonomonas , but the strain could not be distinguished from Dysgonomonas oryzarvi and Dysgonomonas mossii . Whole genome sequencing, followed by phylogenetic analysis and average nucleotide identity ( 〉 95%) analysis, confirmed that the new strain represented Dysgonomonas mossii , leading it to be named Dysgonomonas mossii strain Shenzhen WH 0221. Shenzhen WH 0221 was 3.60 Mb with 37.4% GC content. It was Gram-stain negative, facultatively anaerobic, and grown on Columbia agar supplemented with 5% of sheep blood, exhibiting a smooth surface and pinpoint morphology. The morphological characteristics of this strain include a short rod shape without flagella and a size of 0.45–0.55 × 0.95–1.52 μm observed under transmission electron microscopy. The physiological and biochemical features and major cellular fatty acids (characterized by C 14:0 3-OH, C 14:0 9-CH 3 , and C 16:0 ) differed from D. mossii CCUG 43457 T and other members of the genus Dysgonomonas . The isolate was found resistant to most cephalosporins, penicillin, norfloxacin, vancomycin, and chloramphenicol, but was susceptible to meropenem, imipenem, tetracycline, clindamycin, and amoxicillin-clavulanic acid. Genes kdpE , ykkD , cmeB , TLA-3 , and vanRM found in its genome are probably associated with multiple antibiotic resistance. Lipopolysaccharides, capsules, and cytolysin may also help to illuminate its potential pathogenicity. This is the first report of a case of sepsis caused by Dysgonomonas mossii , and its pathogenic system was analyzed by whole genome sequencing. IMPORTANCE This study identified a new strain, Dysgonomonas mossii strain Shenzhen WH 0221, which has been first reported to cause sepsis isolated from infected blood of a patient with diabetic nephropathy. Physiological and biochemical characterizations, as well as overall fatty acid profile, distinguish Shenzhen WH 0221 from other species of the same genus. However, limited antibiotics were researched for Dysgonomonas mossii . Seventeen antibiotics spanning at least 6 classes were studied, providing a valuable guide to the clinical usage of drugs to treat Dysgonomonas mossii infection. For the first time, we report genome-based functional predictions for Dysgonomonas mossii . Five antibiotic resistance ontologies and more than 200 virulence factors likely underlie the multidrug resistance of Shenzhen WH 0221 and its potential pathogenicity.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2006
    In:  Journal of Virology Vol. 80, No. 24 ( 2006-12-15), p. 12187-12196
    In: Journal of Virology, American Society for Microbiology, Vol. 80, No. 24 ( 2006-12-15), p. 12187-12196
    Abstract: Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an immediate-early protein. This protein is also present in virions as a tegument protein. ORF45 protein interacts with interferon regulatory factor 7 (IRF-7) and inhibits virus-induced type I interferon production by blocking activation of IRF-7. To define further the function of ORF45 and the mechanism underlying its action, we constructed an ORF45-null recombinant virus genome (BAC-stop45) by using a bacterial artificial chromosome (BAC) system. Stable 293T cells carrying the BAC36 (wild type) and BAC-stop45 genomes were generated. When monolayers of 293T BAC36 and 293T BAC-stop45 cells were induced with 12- O -tetradecanoylphorbol-13-acetate and sodium butyrate, no significant difference was found between them in overall viral gene expression and lytic DNA replication, but induced 293T BAC-stop45 cells released 10-fold fewer virions to the medium than did 293T BAC36 cells. When ORF45-null virus was used to infect cells, lower infectivity was observed than for wild-type BAC36. These results suggest that KSHV ORF45 plays roles in both early and late stages of viral infection, probably in viral ingress and egress.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Virology, American Society for Microbiology, Vol. 92, No. 1 ( 2018-01)
    Abstract: Most segmented negative-sense RNA viruses employ a process termed cap snatching, during which they snatch capped RNA leaders from host cellular mRNAs and use the snatched leaders as primers for transcription, leading to the synthesis of viral mRNAs with 5′ heterogeneous sequences (HSs). With traditional methods, only a few HSs can be determined, and identification of their donors is difficult. Here, the mRNA 5′ ends of Rice stripe tenuivirus (RSV) and Rice grassy stunt tenuivirus (RGSV) and those of their host rice were determined by high-throughput sequencing. Millions of tenuiviral HSs were obtained, and a large number of them mapped to the 5′ ends of corresponding host cellular mRNAs. Repeats of the dinucleotide AC, which are complementary to the U 1 G 2 of the tenuiviral template 3′-U 1 G 2 U 3 G 4 UUUCG, were found to be prevalent at the 3′ termini of tenuiviral HSs. Most of these ACs did not match host cellular mRNAs, supporting the idea that tenuiviruses use the prime-and-realign mechanism during cap snatching. We previously reported a greater tendency of RSV than RGSV to use the prime-and-realign mechanism in transcription with leaders cap snatched from a coinfecting reovirus. Besides confirming this observation in natural tenuiviral infections, the data here additionally reveal that RSV has a greater tendency to use this mechanism in transcribing genomic than in transcribing antigenomic templates. The data also suggest that tenuiviruses cap snatch host cellular mRNAs from translation- and photosynthesis-related genes, and capped RNA leaders snatched by tenuiviruses base pair with U 1 /U 3 or G 2 /G 4 of viral templates. These results provide unprecedented insights into the cap-snatching process of tenuiviruses. IMPORTANCE Many segmented negative-sense RNA viruses (segmented NSVs) are medically or agriculturally important pathogens. The cap-snatching process is a promising target for the development of antiviral strategies against this group of viruses. However, many details of this process remain poorly characterized. Tenuiviruses constitute a genus of agriculturally important segmented NSVs, several members of which are major viral pathogens of rice. Here, we for the first time adopted a high-throughput sequencing strategy to determine the 5′ heterogeneous sequences (HSs) of tenuiviruses and mapped them to host cellular mRNAs. Besides providing deep insights into the cap snatching of tenuiviruses, the data obtained provide clear evidence to support several previously proposed models regarding cap snatching. Curiously and importantly, the data here reveal that not only different tenuiviruses but also the same tenuivirus synthesizing different mRNAs use the prime-and-realign mechanism with different tendencies during their cap snatching.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...